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Abstract: Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends 

and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by  

Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) 

abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish 

abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current 

trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of 

future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in 

the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less 

than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision 

necessary to make informed management decisions. 
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1. INTRODUCTION 

Trout fishing is an important economic activity in many 
western states including Montana [1]. Over the past 20 years 
Montana’s rivers have been influenced by many factors  
including cessation of fish stocking, terminal gear and  
harvest restrictions, variable flow and temperature regimes 
due to dam operations and climate fluctuations [2], and 
whirling disease (Myxobolus cerebralis) [3]. In Montana, 
fish populations are monitored as “surveillance” i.e.,  
monitoring that is not driven by a priori hypotheses and  
alternative models of ecosystem processes [4]. Long-term 
data sets monitoring populations may be useful for  
estimating the effects of changing environmental conditions 
or human manipulations of the environment, and providing 
baselines to evaluate future responses [5]. However, recent 
literature has suggested that long-term monitoring driven by 
statistical rigor, carefully defined questions, and conceptual 
models of ecosystem processes can more efficiently provide 
information that is directly relevant to management concerns 
and issues [4-5].  

 Effective monitoring programs for fish and wildlife pro-

vide managers with information needed to make informed  
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decisions regarding management actions [6]. Fish and wild 
life managers monitor populations and use long-term data to 
inform the public, evaluate impacts of environmental 
changes, and assess population status to determine if man-
agement actions are necessary to sustain population levels. 
Despite the value of long-term data sets, estimating popula-
tion abundance is often a time-consuming and complex task 
and data are often equivocal or imprecise. Natural environ-
mental and demographic stochasticity can mask population 
changes that may be important for informing management 
decisions [7]. Several recent studies describe and recom-
mend the use of modeling procedures that make more accu-
rate inferences and predictions regarding population dynam-
ics because they account for observation error produced by 
an observer’s inability to perfectly detect and measure the 
system (i.e., capture efficiency) [7-9].  

Mark-recapture methods [10-11] are commonly used to 
estimate the abundance of fish and wildlife populations. Fish 
populations may violate closure assumptions due to move-
ments [12], thus biasing density estimates high. However, if 
animal movements are random in and out of the study popu-
lation, abundance estimates are less precise but unbiased 
[13]. Hierarchical models represent a powerful approach for 
incorporating ecological uncertainty and accounting for both 
observation and process error when modeling populations 
[14]. When analyzing long-term time-series data sets, ac-
counting for variability in detection probabilities over time 
(observer error) is important to prevent interpreting changes 
in detectability as though they were changes in population 
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size [15]. Incorporating observation error of population esti-
mates into modeling of the time-series data is an important 
step to ensure that uncertainty is included in any analysis of 
trend. Only models that contain both process and observation 
error can fully capture the range of uncertainty associated 
with complex ecological studies [9].  

We evaluate the ability of Montana Fish Wildlife and 
Parks’ surveillance monitoring program to address trout 
management issues in Montana rivers. We estimate the ob-
servation error for trout abundance from mark-recapture 
models [16], and then incorporate estimates of observation 
error into a process model (in our case a Gompertz model) to 
estimate population trend, predict populations into the future 
and estimate their risk of decline, and evaluate the effects of 
surveying fish populations in alternative years rather than 
annually on our estimates of populations trend and potential 
for a population decline. Lastly we estimate the ability of the 
monitoring programs to detect short-term trend in fish popu-
lations based on observed variation. 

2. MATERIALS AND METHODS 

2.1. Mark-Recapture Data 

The data used for this analysis were collected by Mon-

tana Fish, Wildlife & Parks (FWP) between 1988 and 2008. 

For this study we selected river reaches in three major rivers 

in Montana based on the availability of relatively complete 

data sets for the 20 year period; the Mill Creek section of the 

Yellowstone River, Pine Butte section of the Madison River, 

and the Craig section of the Missouri River. These monitor-

ing reaches were initially established based on ease of ac-

cess, few safety hazards, the presence of habitats and fish 

communities that represented much longer reaches of each 

river, and where fisheries biologists could reasonable expect 

a uniform fish capture efficiency across the study area (i.e., 

no hard to access areas).  

Sampling was conducted to fulfill the assumptions of a 
closed population associated with the Peterson [10] mark-
recapture estimator [17, 18]. However, because of the diffi-
culties monitoring species in unbounded reaches (i.e., with-
out block nets or barriers), care was taken to maximize cap-
ture efficiency and these conditions were mimicked among 
years. Conditions biologists attempted to control for included 
water conditions (i.e., river stage, turbidity, temperature) and 
timing of sampling for when target species were relatively 
sessile (e.g., i.e., reduce effects of movement into and out of 
sample sections [13]).  

Population sampling was conducted either in the spring 
(May-June) on the Yellowstone or the fall (August-
September) on the Madison and Missouri rivers. Sampling 
each year was conducted in as similar conditions (i.e., flow, 
turbidity, water temperature, and time of year) as possible to 
limit annual variation in capture efficiencies and fish behav-
ior caused by environmental variation at the time of sam-
pling. Crews generally made between two and three down-
stream marking runs.  

Sampling was conducted using a drift boat with a mobile 
anode on the Madison River, and jet-powered boats with 
boom-mounted anodes on the Yellowstone and Missouri 

rivers. During marking runs, all trout were anesthetized (us-
ing MS-222), measured for total length (to the nearest 2.5 
mm [0.1 inch]), weighed (to the nearest 4.5 g [0.01 pound]), 
and marked with a fin clip that could be easily recognized 
upon recapture. Following handling, fish were released back 
into the sampling section near where they were captured. 
Electrofishing was conducted with straight DC, and typically 
around 1,000 watts was used for capture to reduce spinal 
injury [19, 20]. Recapture runs were made within 7 - 10 days 
of the marking runs to limit growth and movement, while 
allowing enough time for the fish to redistribute within the 
population and recover from handling [21-23].  

2.2. Mark-Recapture Model  

We follow Royle and Dorazio [16] and formulate our re-
capture data as a multinomial distribution with the number of 
outcomes equal to the number of possible binary encounter 
histories. For example, with two visits there are four possible 
outcomes (11, 10, 01, 00) and the probabilities are 11= p

2
, 

10= p(1-p), 01= (1-p), 00= (1-p)
2
 ; where p=the capture 

rates or probability of animal being included in sample. Cap-
ture rates in fish can vary from individual to individual due 
to the species and size of the fish, and can vary from year to 
year due to crew efficiency, seasonal timing of surveys, wa-
ter clarity, and other factors. Therefore, estimates that correct 
for the imperfect “catchability” of all animals in the popula-
tion are likely to be more accurate.  

Incorporating known or suspected effects on recapture 
probabilities is an important step in obtaining unbiased esti-
mates of abundance, particularly if changes in detection may 
mask or distort the comparisons of interest [24]. We model 
the effect of fish size and year hierarchically by imposing a 
prior distribution, a hyperprior, on the collection of parame-
ter estimates. The prior distribution of the covariate effects 
(year and fish size) on detection probability (p) are defined 
by a normal distribution ( ,  ) with a mean ( ) and a stan-
dard deviation (  ). The prior distribution of  ~ (1/( 2)), and 
the prior distribution of  =N(0,2). The prior distribution on 
the  is referred to as the hyperprior [25]. Alternatively we 
could have estimated one parameter for each year and length 
class resulting in 20 year specific estimates and 3 independ-
ent length class estimates. We could also have assumed a 
constant detection probability across time and length class 
and ignored variability in detection. Modeling the parameters 
hierarchically in essence is a compromise between these al-
ternative model constructions. The hierarchical construct 
results in a “borrowing” of information across parameters 
drawn from the same population, in our case detection prob-
abilities estimated from replicate years of data on the same 
fish population.  

 We carried out a Bayesian analysis of the mark-
recapture model using the method of data augmentation. 
Data augmentation is achieved by augmenting the observed 
data set with a large number of all-zero encounter histories 
[26], in effect creating a “superpopulation” of individuals, 
M, where only a subset of those individuals, N, are exposed 
to sampling. A set of latent indicator variables zi (i=1, 2, M), 
determines which individuals in M are members of N. Mem-
bership of an individual is determined by a Bernoulli trial 
where zi ~ Bern ( ); zi =1 if the individual i is a member of 
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the population and zi=0 if the individual is not, and  is the 
overall probability that an individual in M is a member of N. 

Population size is defined as a function of the latent z 
variables according to 

  

N = z
i

i=1

M

 

where N prior is formulated as a binomial N ~Bin(M, ) 

The observation model (i.e., for yi) is defined conditional 
on the latent variables zi: 

  
y

i
~ Bin(J , z

i
p) . 

We modify p in our models to reflect capture efficiency 
as a function of trout length class (s) (25.4 cm to < 30.5 cm, 
30.5 cm to < 38.1 cm, or 38.1 cm) and year (t); 

logit(ps,t)= s+ t  

 Further year and length class are modeled as a normally 

distributed random effects where ~norm(0, ), 

=
 

2

and 
  

~ U (0,5) and  ~ N( μ , ), with μ ~ N(-

1.7, 4), =
 

2

 and 
  

~ U (0,2) . 

 The prior on μ  was determined by previous research 
modeling the effects of all length classes including those less 
than 25.4 cm on recapture efficiencies (J. Robinson-Cox 
pers. comm.). We implemented the model in WINBUGS for 
15,000 iterations and saved every 5

th 
iteration of

 
3 chains, 

discarding the first 4000 iterations as “burn-in”. Models gen-
erally took 8-20 hours to run depending on the size of the 
fish population. We evaluated models for adequate conver-
gence based on visual inspection of the chains and on   R  < 
1.2 [23].  

2.3. Population Models 

Bayesian state-space models with observation error and 
process error were used for predicting populations into the 
future and estimating trend where Xt~N(Nt,

  x
); where Xt is 

the estimated abundance of the population at time t from the 
mark-recapture models, Nt is the true populations size, and 

x
is the estimated error on the abundance of fish at time t 

also from the mark-recapture models. For our process model 
we used the Gompertz model  

  
log(N

t
) = log(N

t 1
) + +

1
* log(N

t 1
) +

t
  

where t is a normal distributed error term representing the 
process error. This was a two-stage process, where popula-
tion estimates were made from mark-recapture models, and 
then Gompertz models were applied to the estimates. We 
selected the Gompertz model because we believed, after 
much discussion with fisheries biologists, Gompertz models 
adequately represent fish populations constrained by some 
type of density-dependent process in a river system [27]. 
Additionally, previous studies on these same systems have 
determined that Gompertz models best represent fish count 
data for bull trout populations [28]. Gompertz models are 
similar to Ricker models another commonly used model for 

fish population growth. Ricker models assume that there is a 
linear decrease in the growth rate as a function of population 
size [29], while Gompertz models assume a linear decrease 
in the growth rate as a function of the log of the population 
size. As a result, density dependent effects are larger at small 
population sizes under the Gompertz model assumption that 
the Ricker model. Recent research has indicated that for a 
pelagic species decline in a San Francisco Estuary, both 
models gave similar inferences but the Gompertz model 
identify more relationships with covariates [30].  

We evaluated the strength of density dependence by 
simulating density independent population growth by using 
the posterior distributions of the estimate  and N from 
WinBUGS simulations and setting the  terms in the Gom-
pertz models to zero to create a null hypothesis population 
[31]. We calculated the mean and 95% credible interval for 
the difference between the population estimate assuming 
density independence (i.e =0) and the population estimate 
with density dependence (i.e Nt the predicted values from 
Gompertz models).  

We evaluated goodness of fit by visually assessing the re-
lationship between the log of the mark-recapture estimates 
versus the log of the estimates generated by the Gompertz 
models. 

2.4. Evaluation of Alternate Year Sampling  

In order to evaluate whether years could be skipped and 
the impact this would have on our ability to detect or inter-
pret trends in the populations, we fit a Gompertz model to 
abundance estimates from mark-recapture models for rain-
bow and brown trout over a 20 year period. Our model pre-
dictions were calculated automatically in WinBUGS by as-
signing NA to Xt where t >20. We compared observed data to 
our predictions to assess model fit. We then evaluated the 
effect of surveying fish populations in alternative years 
rather than annually by assigning a value of NA to alternate 
years of observation data and re-fitting the Gompertz  
models.  

We estimated the potential for a population decline, by 
assessing the 6600 predicted abundance estimates (from run-
ning 3 chains for 15,000 with a burn-in of 4000 and a thin-
ning rate of 5) for the years where t>20 to determine the per-
centage of estimated abundances that fell below 30% of the 
mean value of the previous 20 years. We estimated the prob-
ability of a population decline from models containing all 
data and models containing alternate years of data to com-
pare predictions between models. We selected a 30% decline 
in the population as a threshold because we believed that a 
decline of this magnitude would trigger a reaction from the 
public, and may be empirically obvious (Montana Fish, 
Wildlife and Parks Monitoring Evaluation committee).  

2.5. Trend Detection 

We evaluated our ability to detect a 30%, 50%, and 75% 
decline in fish populations over a 5-year period. We started a 
population at its mean value over the observed time period, 
and generated data representing a 5 year trend line with a 
30%, 50%,or 75% decline. Each observed value in the trend 
was modeled as Xt ~N(  ,  ) with  equal to the true value 
of the observation (Nt), and observation error  equal to a 
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randomly selected coefficient of variation from the observed 
data. We used the same modeling framework as described 
above for fitting the Gompertz model, except we used a lin-
ear function for the process model 

  
log(N

t
) = log(N

t 1
) + +

t
 

and evaluated the 80% credible interval of  (the trend) to 
determine if the interval contained zero. 

3. RESULTS 

3.1. Evaluation of Trend and Alternate Year Sampling 

The risk of a population declining more than 30% from a 
20-year average, as estimated from our population trajecto-
ries, varied from 2% for rainbow trout in the Missouri River 
to 43% for brown trout in the same river (Table 2). Detection 
probabilities estimated from the Mark-recapture models with 
data augmentation varied from 0.08-0.20. Population trajec-
tories calculated from replacing alternate years of data with 
predicted estimates from the Gompertz models generally 
resulted in similar estimates of risk, with the exception of 
brown trout in the Yellowstone River. Estimated risk jumped 
from 32% to 70% for this species when alternate years of 
data were used. Despite adjusting of prior distributions, and 

numerous attempts, we did not achieve convergence for 
brown trout populations in the Madison River (i.e. R-hat 
values >2 for all parameters).  

Our visual inspections of goodness-of-fit revealed ade-
quate fits for 3 of the 5 populations where we achieved con-
vergence. For rainbow trout on the Missouri and Yellow-
stone rivers, Predicted values from the Gompertz models 
indicated that for high and low Mark-Recapture estimates, 
predicted estimates from the Gompertz models were close to 
the mean (Fig. 1). 

The 95% credible interval for the density dependent pa-

rameter did not overlap zero for brown trout on the Missouri 

river reach only (Table 1). Additionally, we determined that 

population estimates were statistically different for DI versus 

DD predictions for brown trout in same river reach (Fig. 2). 

For rainbow trout on the Missouri, predicted values from the 

DD models were consistently lower than predictions from 

the DI models, but this effect was not statistically significant.  

3.2. Trend Detection 

We estimated that fish populations would have to  
decline more than 50% in five years in order to have a 25%  
chance or greater of detecting a statistically significant trend  

 

Fig. (1). Estimated brown and rainbow trout abundance in three river reaches in Montana from mark-recapture data (open circles) and pre-

dicted trout abundance from Gompertz models (grey dots). Dashed lines represent 95% credible intervals. 
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(Table 3). The chance of detecting a 75% decline was ap-
proximately 90% for 5 of 6 populations. For 4 of 6 popula-
tions the chance of detecting a 30% decline was approxi-
mately 30%. In general, populations where abundance esti-
mates are more tightly estimated will be more conducive to 
detecting smaller changes in population size. Therefore, the 
result that trends were more easily detected in the brown 
trout population on the Madison where coefficients of varia-
tion ranged from 5-9% was not surprising. 

DISCUSSION 

Staples et al., [32] found that trends in annual predictions 

of risk appeared to be a better indicator than actual trends in 

populations of bull trout in the Flathead River basin of Mon-

tana. In our simulations skipping years of data resulted in 

little change to our estimates of risk, except for the brown 

trout population in the Yellowstone River. However, popula-

tion predictions from our models were essentially non-

Table 1. Parameter Estimates from Gompertz State-Space Model where ( = the Time Trend, =the Density Dependent Effect, and 

=Process Error) for Three River Reaches in Montana. Data Were Collected Over a 20-Year Period from 1988-2008. L.C.I. 

and U.C.I. Indicate Upper and Lower 80% Bayesian Credible Intervals 

 All Years of Data Alternate Years of Data 

River Species Parameter Mean L.C.I.  U.C.I. Mean L.C.I. U.C.I. 

Missouri brown  -0.162 -0.393 0.027 0.007 -0.389 0.327 

   -0.035 -0.049 -0.009 -0.032 -0.049 -0.007 

   0.465 0.153 0.748 0.268 -0.166 0.787 

 rainbow  -0.050 -0.449 0.450 -0.431 -0.498 -0.294 

   -0.023 -0.096 0.049 -0.093 -0.100 -0.076 

   0.241 -0.187 0.674 1.245 1.099 1.381 

Yellowstone brown  -0.009 -0.381 0.369 -0.067 -0.385 0.367 

   -0.006 -0.048 0.042 -0.018 -0.049 0.026 

   0.049 -0.363 0.554 0.181 -0.458 0.632 

  rainbow  0.075 -0.310 0.321 0.097 -0.297 0.384 

   -0.012 -0.047 0.034 -0.016 -0.049 0.049 

   -0.011 -0.408 0.307 -0.007 -0.436 0.378 

Madison rainbow  -0.374 -0.699 -0.029 -0.598 -0.776 -0.380 

    -0.019 -0.049 0.026 -0.027 -0.049 0.011 

     0.486 0.197 0.769 0.804 0.297 1.148 

Fig. (2). Estimated difference between predicted population size under density independence and density dependence. Error bars represent 95% credible inter-

vals. Positive differences indicate that density independent predictions were greater than density dependent predictions, vice versa for negative differences. 
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informative (i.e., had wide credible intervals). Many authors 

have suggested that increasing the precision of estimates 

should be a goal of any monitoring program [33, 34], and 

that managers should not be wary of skipping years of data 

in order to increase the precision of estimates in alternate 

years [6, 9]. In our analysis we “borrowed” information 

across years within a site to estimate the detection function 

and improve estimates of recapture efficiency for years with 

sparse data.  

Our inability to detect statistically significant density-
dependent effects for most species in most rivers (i.e. where 
estimates of the density dependent term in the Gompertz 
model were statistically different from zero) may be the re-
sult of our data covering too short of a time frame for effects 
to be detected statistically [35], or the overall uncertainty in 
our parameter estimates. Additionally, for rainbow trout in 
the Yellowstone and Missouri river reaches, Gompertz mod-
els displayed a lack of fit and a tendency to estimate high 
and low observations closer to the mean. Gompertz models 
may not be the appropriate model for these species, in these 
river reaches. Modeling sources of variation such as weather, 
abundance of other species, or flow rates on abundance and 
capture efficiency may allow managers to gain more accu-
rate and precise estimates, and/or develop a greater under-

standing of the process driving the population dynamics of 
trout species. 

Estimating population trend is often a goal of fish man-
agers. However, our inability to detect declines of 30% or 
50% over a five-year period is not surprising, and reflects the 
large amount of uncertainty associated with our estimates. 
Managers often want to know a short term < 5-year trend; 
however, longer-term data sets are usually necessary to de-
tect even precipitous declines [33, 34]. For example, Wild-
haber et al., [36] determined that 10-20 years of data were 
necessary to detect a 5% annual decline in catch per unit 
effort of two sturgeon species. Estimating trends in fish 
abundance requires accurate estimates of population num-
bers in order to avoid concluding that changes in population 
counts are due to population changes and not changes in the 
observation process. Accurately enumerating fish and wild-
life populations is a notoriously difficult statistical problem, 
which should not be ignored when designing monitoring 
programs. 

Evaluating monitoring programs on the power of the 
sampling to detect trends may not be the best metric [33]. 
There are many assumptions that have to be made in order to 
determine the statistical power of any particular analysis. For 
example, our ability to detect a trend assumed that a signifi-

Table 2. Percentage of Simulated Population Trajectories where Values Contained within the 80% Confidence Limit of the Mean 

Fell Below 70% of the 20 Year, Average (Average Abundance). “All Years” Indicates that Parameters Estimated from 

Models Containing all the Data were Used to Simulate Population Trajectories. “Alternative years” Indicates that Parame-

ters Estimated from Models Containing Alternative Years of Data were Used to Simulate Population Trajectories 

 All Years Alternate Years 

River Species Mean Abundance % of Simulations< Threshold % of Simulations< Threshold 

Missouri brown  4751 43% 43% 

 rainbow 4796 2% <1% 

Yellowstone brown 1805 32% 70% 

 rainbow 1015 40% 40% 

Madison brown 3717 NA NA 

  rainbow 2439 13% 17% 

Table 3. Results of Simulation Models Based on Observed Data, Determining the Percentage Runs Out of 1000 Simulations that  

Produced Statistically Significant Trend Estimates given a Set Population Decline Over a 5 Year Period. CV 

Range=Coefficient of Variation Range for the Estimated Population Means 

 Percent Decline 

River Species CV Range 30% 50% 75% 

Missouri brown 5-9% 73.60% 98.40% 100% 

 rainbow 18-49% 14.30% 23.50% 49% 

      

Yellowstone brown 5-44% 35.10% 64.60% 88.60% 

 rainbow 7-35% 29.90% 59.30% 88.40% 

      

Madison brown 9-27% 28.60% 57.30% 88.60% 

  rainbow 7-35% 30.10% 60.70% 85.50% 
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cant decline in the population would not correspond with a 
simultaneous change in the CV of the population estimates. 
Trend analysis may provide management with useful infor-
mation regarding the trajectory of a population regardless of 
the statistical significance of the trend; however, for most 
populations determining what magnitude of change repre-
sents a biologically significant change is a difficult task.  

Monitoring programs should be designed carefully to en-
sure adequate sample size to estimate the population metric 
of interest, [33, 34, 37] and in some cases annual surveys 
should be abandoned if necessary to increase the length of 
the time series or the intensity of the sampling [8]. Dauwal-
ter et al., [38] demonstrated a variety of sampling designs 
that had similar statistical power to detect declines in trout 
biomass over time. In Montana, conducting fish monitoring 
less frequently but with greater intensity might be better for 
trend evaluation, if that meets the objectives for monitoring. 
Improved precision of estimates would have increased our 
ability to detect trends. Sampled reaches within a particular 
Montana river could be combined to increase the number of 
replicates for a particular river, thereby increasing the num-
ber of monitoring sites and potentially improving precision 
[38]. However, determining the spatial scale of the trout 
populations is necessary prior to combining sites or increas-
ing the number of replicates. A better understanding of how 
species distributional factors change over time and space 
would provide valuable information to improve sampling 
designs for future trout population estimates [39]. Replica-
tion of sites in ecological studies is always difficult, and 
even within the same river system, populations at different 
sites may be different enough that variability of a river-wide 
population estimate would only increase when sites are 
added.  

Identification of monitoring objectives is essential in de-
signing a monitoring protocol that provides a cost-effective 
way meeting management needs. Defining the objectives of 
the monitoring program in the context of a decision-making 
strategy is the first step toward developing an effective sam-
pling design that will provide managers with the information 
they need to make informed decisions [40]. Monitoring is 
necessary when decisions are based on the “state” of the sys-
tem which is often the population size of the species in ques-
tion [41]; however, monitoring may be more critical when 
the state of the system is uncertain and predictions from 
population models contain too much variability to be infor-
mative [6]. Developing and testing predictive population 
models is an essential step toward an improved understand-
ing of trout population dynamics and a more cost-effective 
monitoring program. An accurate and reliable predictive 
model could be developed and used to estimate populations 
in years when sampling does not take place, allow managers 
to determine the circumstances under which model predic-
tions are most uncertain, and monitoring is most necessary.  
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