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Abstract: Bacterial coldwater disease and other infections caused by Flavobacterium psychrophilum are a worldwide 
concern, particularly for freshwater salmonid hatcheries. F. psychrophilum infections can be difficult to control; antibiotic 
resistance is common and no effective vaccines are currently available. This review summarizes the biology and charac-
teristics of this important pathogen, as well as the techniques required for isolation and identification. In addition, the epi-
demiology, clinical signs, treatment, and possible preventative measures of bacterial coldwater disease are discussed. 
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INTRODUCTION 

Flavobacterium psychrophilum is a ubiquitous bacterium 
in the aquatic environment, particularly in freshwater [1]. As 
the etiological agent of bacterial coldwater disease, it is a 
serious fish pathogen causing substantial economic losses 
and rearing difficulties to both commercial and conservation 
aquaculture [2]. This review paper describes the epidemiol-
ogy, clinical signs, prevention, and treatment of the fish  
diseases attributed to this pathogen, which are similar despite 
the different geographic labels. In addition, the basic biology 
of F. psychrophilum and the techniques required for  
successful bacterial culture, isolation, and identification are 
discussed. 

EPIDEMIOLOGY 

Davis [3] first named an infection due to Flavobacterium 
psychrophilum as peduncle disease. According to Wood [4], 
a similar infection was called low temperature disease in 
1949 because of its propensity to occur at cooler water tem-
peratures. F. psychrophilum infections have also been la-
beled as fin rot disease [5], saddleback disease [6], fry mor-
tality syndrome [7, 8], rainbow trout fry syndrome [9, 10], 
rainbow trout fry mortality syndrome [11], bacterial disease 
of cold water [12], coldwater disease [13] and bacterial 
coldwater disease [14, 15]. Bacterial coldwater disease 
(BCWD) has become the established name in North Amer-
ica, where F. psychrophilum infections were first reported, 
whereas rainbow trout fry syndrome is the common disease 
name in Europe, where the disease etiology was not initially 
known [16, 17]. BCWD will be used in the remainder of this  
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paper to denote any of these infections caused by F.  
psychrophilum. 

Flavobacterium psychrophilum infections are found 
throughout the world [18, 19]. BCWD has been identified 
throughout North America [14, 20], nearly every country in 
Europe [8, 21-25], Australia [26], Chile [27], Peru [12], Ja-
pan [27, 28], Korea [29], and Turkey [30, 31]. 

Juvenile rainbow trout and coho salmon are particularly 
susceptible to BCWD [1, 2, 15, 32, 33]. However, F. psy-
chrophilum infections have been reported in a wide range of 
both anadromous and non-anadromous salmonids of various 
sizes [34-42]. In addition, F. psychrophilum has either 
caused disease or been detected in Japanese eel Anguilla 
japonica [43], European eel Anguilla anguilla [44], common 
carp Cyrpinus carpio[44], crucian carp Carassius carassius 
[44], tench Tinca tinca [44], ayu Plecoglossus altivelis [27, 
29], pale chub Zaco platypus [28], perch Perca fluviatilis 
[45], and roach Rutilis rutilis [45]. 

PATHOGENESIS 

The biology of infection by Flavobacterium psychrophi-
lum begins with the presence of the pathogen. F. psychrophi-
lum is most likely in the aquatic environment and can likely 
survive for several months or even years in fresh water out-
side a fish host [46-50]. It may also be present via a fish res-
ervoir [25], with live infected fish shedding 10 x 103 to 10 x 
107 bacterial cells/fish/h into water [45]. Dead fish release 
even greater numbers of bacteria [51]. While there is some 
discrepancy over the presence of the bacteria on healthy fish 
skin, breaks in the tegument are the most likely invasion 
routes into the fish [45, 52, 53]. Madetoja et al. [45] ob-
served that an abrasion of the skin and associated mucus 
greatly increased F. psychrophilum invasion. Likewise, 
Miwa and Nakayasu [53] recovered the bacteria only from 
damaged skin, even if inflicted injuries were only micro-
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scopic, and emphasized that skin injuries are a major portal 
for F. psychrophilum entry. The bacterium likely has an af-
finity for the lower jaw, fin, and caudal peduncle [54, 55]. 
The infectivity of F. psychrophilum may be influenced by 
the presence of other infectious or noninfectious organisms 
[52]. Busch et al. [56] suggested that ectoparasites may en-
hance the invasiness of F. psychrophilum. Degraded water 
chemistry, such as high organic loads or elevated nitrite con-
centrations, may also play a role [57, 58].  

Vertical transmission from the brood female is highly 
probable [59, 60]. This was not supported by Madsen and 
Dalsgaard [61] however, who could not recover F. psychro-
philum within the egg and questioned the Taylor [60] meth-
odology. Madsen and Dalsgaard [61] believe F. psychrophi-
lum to be intimately connected with the egg membrane, but 
not within the egg itself. Numerous researchers have noted 
F. psychrophilum on the exterior of the egg, in milt, and in 
ovarian fluid [36, 59-65]. Ekman et al. [10] mimicked verti-
cal transmission by injecting F. psychrophilum into adult 
rainbow trout. Kumagai [66] recovered F. psychrophilum 
cells within salmonid eggs by experimentally immersing 
them in a F. psychrophilum suspension prior to wa-
ter-hardening. Resistance to vertically-transmitted F. psy-
chrophilum may also be influenced by the maternal transfer 
of contaminants such as PCBs [67]. 

Upon entry into the fish, F. psychrophilum secretes psy-
chrophilic protease [68-70]. Nematollahi et al. [58] noted a 
negative relationship between temperature and bacterial at-
tachment. The bacteria create tubular boreholes to obtain Ca 
for further protease activation [55, 70]. After entering the 
dermis, F. psychrophilum spreads through collagenous con-
nective tissue, for which it has a high affinity, and further 
expands into the musculature [53, 71]. Open ulcers are cre-
ated, with subsequent lesions on the internal organs [53, 71]. 

Flavobacterium psychrophilum strongly suppresses the 
nonspecific humoral defense mechanisms of the infected fish 
[72]. Lammens et al. [73] observed that in the presence of 
phagocytes bacterial numbers decreased, but this decrease 
was not due to phagocytic action. Viable bacteria have been 
noted inside spleen phagocytes [52, 74], which may protect 
them against humoral defense mechanisms such as comple-
ment and lysozyme activity [52]. Wiklund and Dalsgaard 
[75] observed that high complement activity in rainbow trout 
sera did not reduce the number of F. psychrophilum cells. 
Because of reduced reactive oxygen species, spleen macro-
phages might provide a safe location for F. psychrophilum to 
minimize exposure to the immune system of the infected fish 
[76]. LaFrentz et al. [77, 78] noted that both non-specific 
immune actions and a specific antibody are needed to induce 
an effective immune response against F. psychrophilum.  

F. psychrophilum has at least three main serotypes [18, 
24, 43]. There are also a number of distinct genetic lineages, 
with the number appearing to increase with the refinement of 
molecular DNA techniques [19, 20, 40, 79] with consider-
able genetic variation and variation in virulence among 
strains [19, 25, 45, 80, 81]. Strain virulence may also be fish 
species specific [42]. Based on RAPD (Random Amplifica-
tion of Polymorphic DNA) results, Chakroun et al. [83] sug-
gested that North America was the source of F. psychrophi-
lum in Asia, and a separate strain from Europe was trans-

ferred to Australia and then back to Europe. However, using 
nucleotide polymorphisms from F. psychrophilum world-
wide, Nicolas et al. [19] found no evidence that North Amer-
ica was the original source of F. psychrophilum and that 
there was a wide diversity of strains in Europe, particularly 
in wild, non-salmonids. Nicolas et al. [19] suggested that 
human activities likely facilitated the spread of the main two 
F. psychrophilum clonal complexes. 

CLINICAL SIGNS AND DIAGNOSIS 

The erosion of tissue, particularly involving the caudal 
peduncle or caudal fin, is a classic characteristic of BCWD 
[3, 6]. Martínez et al. [55] noted that one of the first signs of 
an infection is the development of whitish material along a 
fin margin, followed by progressive necrosis. However, even 
if the fin erosion or characteristic peduncle necrosis is not 
evident, other clinical signs of BCWD are numerous. Signs 
such as lower jaw skin ulcerations, pale or necrotic gills, 
epidermal hyperplasia, increased mucus production, in-
creased pigmentation (particularly posteriorly, resulting in 
“black tail”), ascites, lethargy, scleritis, blindness, anemia, 
enlarged speen, intestinal inflammation, exophthalmia, pale 
liver and kidney, nervous disorders, spinal abnormalities, 
hemorrhagic and protruding anus, and spiral swimming be-
havior have also been reported [7,12, 14, 22, 34, 54, 84-94]. 
Larger fish may be more likely to exhibit necrotic lesions 
associated with classic BCWD [17, 95], where as histologi-
cal indications are similar among all external manifestations 
of F. psychrophilum infection [17]. Nuerological symptoms, 
including spiral swimming, or deformities such as spinal 
compressions may be present long after an infection [1, 85, 
93]. 

Histologically, necrosis of most of the internal organs has 
been observed [7, 17, 46, 63, 87, 96, 97]. F. psychrophilum 
is strongly associated with phagocytes in the kidney and 
spleen [74, 97, 98]. The spleen is particularly affected, with 
hemosiderosis [87], hemorrhages [17], necrosis [17, 74, 97], 
and the presence of numerous bacteria [17, 74, 97, 99]. F. 

psychrophilum has also been observed in retina and choroid 
gland of the eye [71]. 

Reported mortality from BCWD has varied. The highest 
reported mortality rate has been 90% in rainbow trout [25]. 
Mortality rates of 85% in steelhead (anadromous rainbow 
trout) have been reported by Brown et al. [59] with up to 
70% mortality in rainbow trout from Western Europe by 
Santos et al. [22], Lorenzen et al. [7] and Bruno [87], and in 
Turkey by Kum et al. [31]. In contrast, Jensen et al. [100] 
reported an average of 34% rainbow trout mortality from 
BCWD in Denmark, Bruno [87] estimated mortalities be-
tween 10 and 30% in the UK, and Gultepe and Tanrikul [30] 
reported 20% mortality in Turkey. Wood [4] and Holt [14] 
noted mortality rates of up to 50% in coho salmon fry. Mor-
talities ranging from 5 to 30% are typically experienced in 
slightly larger coho fingerlings [4, 14, 16, 101]. Losses from 
BCWD in cutthroat trout Oncorhynchus clarki have been 
reported to range from 30 to 45% [94, 102], and Schachte 
[34] noted 25% mortality in lake trout Salvelinus namay-

cush. Post [5] indicated that mortality could be very low 
(1%) and continuous, but could reach up to 75% in a severe 
epizootic. 
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The observed differences in fish mortality rates are likely 
due to a number of reasons. Water temperature is one key 
factor [103]. Although the disease mostly occurs from 4 to 
10°C [4, 5], it is most severe at 15°C [1]. Wood [4] noted 
increasing mortality in coho salmon with increasing water 
temperatures from 10 to 16°C. Slighter higher water tem-
peratures from 16 to 21°C are typical in BCWD outbreaks in 
ayu in Japan [104].  

Bacterial virulence is also extremely important in deter-
mining the severity of BCWD epizootics [103]. There are 
large numbers of serologically and genetically different F. 
psychrophilum strains with highly variable virulence [19, 45, 
105], perhaps due to plasmid or siderophor influences [106]. 
The pathogenic strains themselves are also heterogeneous 
[20]. Different strains have exhibited different resistance to 
rainbow trout macrophage activity [76]. The genetics of the 
fish themselves also contributes to different mortality rates. 
Johnson et al. [107] noted a large variability in mortality 
after challenging 71 full sib families with F. psychrophilum. 

BACTERIAL CULTURE AND PATHOGEN IDENTI-
FICATION 

Davis [3] first observed bacterial rods from scrapings of 
rainbow trout Oncorhynchus mykiss caudal penduncle le-
sions. Borg [108], observing similar clinical symptoms in 
coho salmon O. kisutch, isolated a bacterium from lesions 
and the kidney. Further describing the rod-shaped bacteria as 
gram-negative with gliding motility, no fruiting bodies or 
microcysts, and an inability to grow on culture media above 
25°C, Borg [6] classified it with myxobacteria and named it 
Cytophaga psychrophila. Lewin [109] suggested renaming it 
Flexibacter aurantiacus, and this name was used approxi-
mately 20 years later by Starliper et al. [110]. Based on 
DNA homology, Bernardet and Grimont [111] contended 
that this species should be reclassified and renamed Flexi-
bacter psychrophilus, order Cytophagales. Subsequently, it 
was again reclassified into the family Flavobacteriaceae and 
renamed Flavobacterium psychrophilum [112]. These taxo-
nomic changes have not been without some confusion and 
controversy however [113-115]. 

Pacha [84], Holt [14], and Madetoja et al. [41] describe 
F. psychrophilum as a weakly refractile, slender, gram-
negative, flexible rod-shaped bacterium. Gliding motility 
occurs [84, 111], but is strongly influenced by nutrient con-
centrations [116]. In addition, the extent of gliding motility 
varies considerably, with substantial variation between 
strains [82, 117]. Pacha describes its size as approximately 
0.75 μm in diameter and 1.5 to 7.5 μm in length. In contrast, 
Bernadart and Kerouault [21] describe the bacteria range in 
length as 3 to 10 μm, and Post [5] described it having a di-
ameter from 0.7 to 1.5 μm, and length from 5 to 100 μm. 
Age may affect the length of this species [118]. Optimal in-
cubation temperature is 18 to 20° C, with no growth occur-
ring at temperatures of 30° C or greater [21, 84, 119]. F. psy-
chrophilum is strictly aerobic and exhibits variable colony 
morphology [11, 84]. On cytophaga agar, F. psychrophilum 
colonies appear as bright yellow colonies with thin spreading 
margins [18, 84].  

Flavobacterium. psychrophilum is only weakly reactive 
to chemical tests [120], however it is highly proteolytic, and 

can hydrolyze casein, digest albumin, hydrolyze tributyrin, 
and peptonize litmus milk [68, 69, 106, 111]. It will produce 
catalase [84, 101] and oxidase [111, 117]. None of the F. 

psychrophilum strains evaluated thus far can hydrolyze 
starch or utilize carbohydrates [21, 84]. The bacterium does 
not produce hydrogen sulfide, reduce nitrite to nitrate, pro-
duce cytochrome oxidase, degrade chitin, decompose cellu-
lose, or hydrolyze xanthine [84]. Pacha [84] noted that F. 

psychrophilum would grow in 0.8% NaCl, but growth was 
inhibited at concentrations of 2.0%. However, Bernardet and 
Kerouault [21] observed no growth at NaCl concentrations 
greater than 0.5%. This discrepancy could be possible ex-
plained by differences between F. psychrophilum strains. 

Being somewhat fastidious, F. psychrophilum can be dif-
ficult to both culture and isolate [117, 121, 122]. Several 
different agars have been used to grow F. psychrophilum in 
the laboratory, such as numerous variations of cytophaga 
agar [8, 21, 84, 96, 123-127]. Tryptone-yeast extract and 
tryptone-yeast extract-salts agar have also been used [45, 
121]. Antibiotic-containing media has also been used [128, 
129]. Comparing several media, Cepeda et al. [119] found 
that tryptone-yeast extract-salts agar with added glucose was 
the most effective medium at 18°C for isolating F. psychro-

philum from diseased fish tissues. Antaya [2] also success-
fully used tryptone-yeast extract-salts agar in conjunction 
with incubation times of 72 h, while Álvarez and Guijarro 
[122] noted improved culture results with the addition of 
activated charcoal to several types of media. 

Other methods have improved the speed, sensitivity, and 
precision of detecting and identifying F. psychrophilum. 
Lorenzen and Karas [130] used immunofluorescence to rap-
idly diagnose F. psychrophilum infections. Madetoja and 
Wiklund [131] considered an immunofluorescent antibody 
technique an improvement over traditional plate culture. 
ELISA (enzyme-linked immunosorbent assay) and fluores-
cent antibody techniques have also been used as both an 
identification and screening tool for F. psychrophilum [18, 
132]. Álvarez et al. [133] considered ELISA to be the best 
diagnostic technique. An agglutination assay was used by 
Misaka and Suzuki [134], and Misaka et al. [135] detected 
and quantified viable F. psychrophilum using colony blotting 
and immunostaining.  

Nakagawa and Yamasota [136] developed polymerase 
chain reaction (PCR) primers for F. psychrophilum. PCR 
was also used by Toyama et al. [137], Izumi and Wakabaya-
shi [138, 139] and Bader and Schotts [140], although To-
yama et al. [141] noted that the technique lacked sensitivity. 
Urdaci et al. [142] and Wiklund et al. [129] used PCR to 
detect F. psychrophilum in samples of infected fish tissue. 
Cepeda and Santos [143] described a fast and reliable PCR 
method specific to F. psychrophilum using relatively non-
toxic chemicals. F. psychrophilum has been identified from 
formalin-fixed and wax-embedded tissue [144] using PCR. 
Ramsrud et al. [145] differentiated strains using a simple 
PCR assay. Tiirola et al. [146], Izumi et al. [147], and Soule 
et al. [79], used PCR-RFLP (restriction fragment length 
polymorphism), whereas del Cerro et al. [148] developed a 
multiplex PCR method combining the use of 16S rDNA with 
gyrB based primers to improve reliability and accuracy. 
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Misaka and Suzuki [134] also used PCR targeting the gyrB 
gene in conjunction with nested PCR. 

It is difficult to compare agar plate culture directly to mo-
lecular identification techniques, because the results are of-
ten strikingly different [146]. For example, F. psychrophilum 
was identified using PCR from trout tissues where no bacte-
ria had been cultured using cytophaga agar [144]. Taylor and 
Winton [149] noted the improvement in speed, specificity, 
and sensitivity of nested PCR in comparison to agar plate 
culture. Nested PCR was also used by Baliarda et al. [120] to 
report viable F. psychrophilum cells which could not other-
wise be cultured, and by Izumi et al. [150] to detect F. psy-
chrophilum in environmental samples containing other or-
ganisms. Madetoja and Wilklund [131] suggested the use of 
bot nested PCR and an immunofluorescence antibody tech-
nique. More recently, Fujiwara-Nagata and Eguchi [151] 
described a simple and quick loop-mediated amplification 
assay (LAMP) method. The complete genome of F. psy-
chrophilum has been sequenced [95]. 

TREATMENT  

Antibiotics are the treatment method of choice during 
BCWD epizootics. Nifurpirinol is effective [4, 5], but is not 
registered in the US for food fish use because it, like other 
nitrofurans, is carcinogenic [16]. Sulfonamides are also ef-
fective [4, 5, 152], but like nitrofurans are not registered for 
use on food fish in the US. Oxytetracycline has been widely 
used around the world for the control of BCWD [1, 5, 13, 15, 
35, 99]. Amoxycillin and oxolinic acid were widely used in 
Europe [99, 153]. However, antibiotic resistance to oxytetra-
cycline (OTC), amoxycillin, and oxolinic acid developed 
relatively quickly [2, 32, 153, 154], leading to therapeutic 
treatments with florfenicol [13, 30, 153], which was only 
recently approved in the US [155].  

Antibiotic resistance to F. psychrophilum is a major chal-
lenge [156]. In 1979, Wood concluded that there were no 
OTC-resistant strains of F. psychrophilum. Brunn et al. 
[153] reported that oxolinic acid was initially used to control 
BCWD in Denmark starting in 1986, but by 2000 there was 
100% resistance to the antibiotic, and the use of OTC be-
came more prevalent. From 1994 to 1998, 60 to 75% of the 
F. psychrophilum isolated from Danish trout farms were 
OTC resistant, and amoxicillin resistance was also observed 
[153]. Only three years later, Brunn et al. [154] reported that 
OTC was rarely used with BCWD in Denmark because of 
antibiotic resistance. Kum et al. [31] reported F. psychrophi-
lum resistance to florfenicol. Bruun et al. [153] speculated 
that F. psychrophilum may have instrinsic resistance to po-
tentiated sulfonamides, and Álvarez et al. [133] reported the 
mutation of antibiotic-resistant genes in the bacteria. The 
ability of F. psychrophilum to produce extensive antibiotic 
resistant biofilms likely leads to the rapid development of 
antibiotic resistance, as well as recurrent infections [157]. 

Other authors have reported BCWD therapies involving 
multiple chemicals or even non-antibiotics. Gultepe and Tan-
rikul [30] described a treatment protocol in Turkey in which 
a hydrogen peroxide bath was followed by feeding florfeni-
col-medicated diets. Post [5] described a similar treatment 
regime, combining an antibiotic followed by quaternary 
ammonium baths every three days. Shachte [35] combined a 

potassium permanganate treatment in conjunction with anti-
biotics. The purpose of the potassium permanganate immer-
sion treatment was two-fold, reduce the F. psychrophilum 
load and expedite mortality of infected individuals, thereby 
eliminating them as bacterial reservoirs [45]. Potassium 
permanganate was also mentioned by Groff and LaPatra [1] 
and La Frentz and Cain [15]. In addition, they listed the use 
of a 10 to 30 minute, 3% salt bath as a treatment for BCWD. 

Despite considerable effort, there is not yet a viable 
commercial vaccine for BCWD. Live attenuated strain vac-
cines may be possible [158, 159]. Virulence attenuation does 
occur with different strains of F. psychrophilum [82], which 
allowed Álvarez et al. [158] to obtain significant disease 
resistance by injecting attenuated live bacteria. Kondo et al. 
[160] significantly improved survival following a subsequent 
challenge with a virulent strain by injecting formalin-killed 
F. psychrophilum into fish. Bath vaccination with heat-
inactivated F. psychrophilum worked successfully, but had 
to occur at least 50 d post-hatch [96]. Immunity has also 
been induced by using a non-attenuated F. psychrophilum 
bath treatment [161], and Nikoskelainen et al. [162] included 
F. psychrophilum in a polyvalent vaccine trial. Compared to 
using the entire F. psychrophilum cell, better protection was 
achieved by the using part of, or all, of the antigenic outer 
membrane [163]. Thus, the identification of specific F. psy-
chrophilum antigens by Crump et al. [164] and La Frentz et 
al. [165, 166], may enhance vaccine development. With the 
successful isolation of several F. psychrophilum bacterio-
phages, phage therapy is also being investigated [105, 167]. 
The use of probiotic bacteria has also shown promise in vitro 
[168]. 

PREVENTION 

Egg disinfection with iodophor is frequently listed as a 
preventive measure against BCWD [1, 15, 16, 35, 60, 94, 
99]. However, F. psychrophilum is very iodine tolerant, and 
can survive treatments of at least 100 mg/l active iodine for 
at least 30 minutes [59, 66]. The relative ineffectiveness of 
current egg disinfection protocols against F. psychrophilum 
is evident in the spread of virulent strains around the world 
[66, 83]. Cipriano [64] also noted that standard iodophor 
disinfection is ineffective, and experimentally showed that 
even triplicate iodophor treatments did not eliminate F. psy-
chrophilum within the egg. Non-chemical disinfection is also 
possible, although Hedrick et al. [169] noted that ultraviolet 
doses of 42 mWs/cm2 do not kill F. psychrophilum, and that 
higher doses of 126 or 256 mWs/cm2 are required.  

Avoiding or minimizing physical handling and stress is 
highly recommended to prevent BCWD outbreaks [1, 15, 
16]. Not only does stress and physical handling cause immu-
nosuppression [170], physical handling also likely leads to 
cutaneous lesions, providing the ideal point-of-entry for the 
pathogen [45, 52, 53]. Ryce and Zale [94] described the 
typical pattern of BCWD occurrence in a Montana hatchery, 
and noted that outbreaks typically occurred three weeks after 
fish handling or moving. Reducing rearing densities is also 
recommended [16, 60]. 

The use of high quality diets may help prevent BCWD. 
Post [5] listed malnutrition as a probable primary cause un-
derlying BCWD. A link between diet and BCWD was dem-
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onstrated by [171]. In their study, rainbow trout fed a diet 
with high oxidized lipid concentrations, compared to fish 
receiving control diets, experienced elevated mortality after a 
F. psychrophilum challenge. 

Poor water quality was also listed one of the primary 
causes contributing to outbreaks of BCWD by Post [5]. 
Groff and LaPatra [1] and Taylor [60] both listed optimum 
water quality as a BCWD preventative measure. Reduced 
organic loads and decreased nitrite concentrations may help 
reduce F. psychrophilum infectivity [57, 58]. Using patho-
gen-free water supplies, either through natural sources or via 
filtering, ultraviolet treatment, or ozonation, was suggested 
by Cipriano and Holt [16]. Elevating water temperatures, if 
possible, may also serve to prevent F. psychrophilum infec-
tions [1, 33]. 

Broodstock screening has been mentioned as a tool to 
prevent BCWD [1, 35]. Lindstrom et al. [132] suggested 
using ELISA and filtration-based fluorescent antibody tests 
for broodstock selection. However, Lumsden et al. [13] 
questioned the practicality of broodstock screening if the 
rearing environment is already heavily contaminated with F. 
psychrophilum.  

Hadidi et al. [155] suggested genetically selecting for re-
sistance in brood fish. Henryon et al. [172] also noted that in 
the absence of effective vaccines, selective breeding showed 
considerable promise. Resistance to BCWD in rainbow trout 
is moderately heritable and not adversely correlated with 
growth, thereby allowing for genetic improvements [173], 
assuming no further detrimental bacterial mutations occur. 

Because dead fish are a reservoir for F. psychrophilum 
[51], removal of mortalities from rearing units is highly 
recommended [13, 15]. Avoiding the introduction of wild or 
novel fish into existing fish stocks is another preventative 
measure [1, 5]. Other preventative measures, such as main-
taining infected stocks downstream in the production system, 
and routine equipment sanitation are also recommended. 

CONCLUSION AND RECOMMENDATIONS 

Despite considerable study, F. psychrophilum remains a 
serious pathogen causing substantial mortality during hatch-
ery rearing worldwide. There are several areas for productive 
future research. Additional work is needed to develop rapid, 
accurate, and definitive diagnostic tests so that existing and 
novel therapies can be started as quickly as possible. While 
getting additional antibiotics registered for legal use would 
be desirable, given the financial constraints of aquaculture 
drug registration and the rapid development of antibiotic 
resistance by F. psychrophilum, research into the use of pro-
biotics or immunostimulants may likely be more productive. 
More study of combination therapies or non-antibiotic 
chemical treatments would also be beneficial. Several areas 
of dietary research are also warranted. Nutritional improve-
ments with enhanced dietary formulations built on estab-
lished formulations may lead to changes in BCWD suscepti-
bility. In addition, the effects of novel dietary ingredients, 
such as the substitution of fish meal with plant-based pro-
teins in carnivorous fish diets, should be evaluated. Devel-
opment of BCWD-resistant brood stocks should continue. 
Lastly, controlled research examining hatchery management 

techniques to reduce stress and minimize the creation of F. 
psychrophilum entrance portals, should be conducted.  
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