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Abstract: Parameters for size allometry in feeding and metabolic rates, along with Q10 parameters for responses of these 
rates to seasonal temperature change, can in principle be estimated from field data on growth, particularly seasonal tag-
ging studies. However, it is still typically necessary to complement or constrain the field estimates with information from 
laboratory studies, particularly on power parameters for size allometry in metabolism, Q10 for metabolism, and responses 
of feeding rate at high temperatures. Ontogenetic habitat shifts can cause apparent changes in the size power parameters 
that are in fact due to temperature differences between the habitats. Seasonal changes in body condition (due to feeding, 
metabolism, and reproduction) can be represented using simple models for allocation of food intake to skeletal growth, 
though parameter estimation for such models is grossly unreliable when only seasonal changes in length growth rates have 
been measured. 
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INTRODUCTION 

Estimates of trophic interaction effects are of growing 
importance in development of aquatic ecosystem policies. 
Such effects are typically estimated by combining abundance 
estimates with diet composition data and estimates of food 
consumption rates from bioenergetics models. The bioener-
getics models have in turn relied substantially upon parame-
ter estimates from laboratory studies. While case studies like 
Hayes et al. 2000 [1] indicate that extrapolation from labora-
tory to field can be very successful, there is a need for meth-
ods to at least cross-validate such parameter estimates using 
direct field observations of growth rate and metabolism pat-
terns [2]. 

It has long been recognized that size-dependent growth 
rates in the field contain information about both food con-
sumption and metabolism. The VonBertalanffy “growth” 
parameter K in fact represents variation in metabolic costs 
with body size and is close to 1/3 of the annual standard 
metabolic rate per unit body weight [3-5], under the assump-
tion that standard metabolism (plus loss of energy to repro-
ductive products) is simply proportional to body weight 
(rather than some lower power of weight). 

This paper discusses the use of various generalizations of 
the VonBertalanffy model for estimation of feeding and me-
tabolism parameters from size-at-age data and growth incre-
ment data from tagging. We first review general bioenerget-
ics models that have less restrictive assumptions than the  
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VonBertalanffy about size dependence in anabolism and 
catabolism, and develop a robust statistical method for esti-
mating the parameters of such models from tagging data. 
Then we examine the possibility of recovering parameters 
for seasonal, temperature driven variation in food consump-
tion and metabolism rates from seasonal tagging and growth 
data, in particular for cases where seasonal changes in rates 
along with seasonal investment in reproductive patterns 
cause changes in body condition. Recovery of information 
about responses to temperature may be particularly useful in 
development of models for predicting impacts on fish per-
formance of climate change. 

We illustrate the parameter estimation methods with case 
studies on a range of species. The case studies are described 
in more detail in the other papers that make up this Supple-
ment. Here we present and review some data and graphics 
from those case studies for readers who seek only overview 
information, but strongly we strongly encourage readers to 
examine the case studies in more detail. 

Symbols used in the model derivations are summarized 
in Table 1. Parameter estimates obtained for case studies 
used to test estimation procedures and for comparison to 
results from laboratory studies are summarized in Table 2 
and Table 3.  

DERIVATION OF A BIOENERGETICS MODEL FOR 
LENGTH DYNAMICS 

As in Essington et al. [5], we begin with a general bio-
energetics model for growth in body weight W, then convert 
this to a model for growth in length by using a length-weight 
relationship. We assume first that growth in body weight can 
be predicted from [6]: 
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Table 1. Definitions of Symbols for Equations 

Symbol Definition Units 

W Body weight g 

H Net food consumption rate per W-d g g-d yr-1 

d Food consumption power parameter -- 

m Standard metabolic rate per W-n g g-1 yr-1 

n Metabolism power parameter -- 

Cmax Maximum food consumption rate per W-d g g-d yr-1 

p Proportion of maximum ration achieved -- 

e Efficiency of food conversion (assimilation x 1-SDA) -- 

R Feeding rate (ration) g yr-1 

!W  Maximum body weight G 

a Intercept coefficient of length-weight relationship g cm-b 

b power coefficient of length-weight relationship -- 

α Anabolic coefficient for length growth cm cm-δ yr-1 

δ Power coefficient for anabolic term in length growth -- 

κ Metabolic coefficient for length growth cm cm-η yr-1 

η Power coefficient for metabolism in length growth -- 

L∞ Maximum body length cm 

L1 Measured body length at tagging cm 

L1 Measured body length at recapture cm 

Δt Time between tagging and recapture Yr 

σ2
m Measurement variance for L1 and L2 cm2 

σ2
L Variance in individual maximum body lengths cm2 

lnL Log likelihood function for parameter estimation -- 

V Variance of an observed growth increment L2-L1 cm2 

D Deviation between predicted and observed L2 cm 

T Water temperature oC 

Qc Proportional increase in feeding rate per 10o temperature increase -- 

Qm Proportional increase in metabolism per 10o temperature increase -- 

Ta Mean annual water temperature oC 

g Steepness parameter for decrease in feeding at high temperatures oC-1 

Tm Water temperature at which feeding drops by half oC 

Ws Weight of body structural tissues g 

fs Proportion of intake or surplus intake allocated to growth of structural tissue -- 

f*s Normal structural tissue proportion of body weight -- 

 θ  Slope parameter for decreasing allocation to structural tissue as Ws/W varies around f*s -- 

W∞ Body weight at which allocation to skeletal growth declines to zero g 

Ri Relative size of individual i at all ages, as a multiple of population mean size -- 

 σ2
R Variance of Ri among individuals (square of CV of individual L∞ values) cm2 
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Table 2. Summary of Bioenergetics Parameter Estimates for the Case Examples Examined in this Study, Asterisks Denote Assumed 
Parameter Values for Situations Where we Were Unable to Obtain Reasonable Estimates by Fitting to Tag Recapture 
and/or Length at Age Data. Parameters Defined in Table 1. Note that the Temperature Inactivation Parameter Tm was Set 
Large (1000) for all Cases, Since the Temperatures for the Systems Examined were all Low Relative to Tolerance Limits 
for the Species Involved. Rainbow Trout and Humpback Chub Estimates are for the Simple CR Model, Brown Trout and 
Pikeminnow for the SRSA Model 

Parameter 
Rainbow Trout 
(Cabin Lake) 

Brown Trout 
(Maruia River) 

Humpback Chub 
(Colorado River) 

Pikeminnow 
(Bonaparte Plateau) 

H 18.37 6.04 21.06 10.18 

m 0.46 0.36 0.48 0.24 

d 0.78 0.76 0.61 0.67* 

n 1.07 1.00* 0.88 1.00* 

Qm 2.48 7.69* 2.0* 2.92* 

Qc 2.81 5.52* 4.59 9.71 

θ na 0.05 na 0.02* 

W∞ na 7424.90 na 270.00* 

 
Table 3. Parameter Estimates from the Complex SRSA Bioenergetics Model with Seasonal Reproduction and Allocation to Skeletal 

Growth, and the Complex Likelihood Function for Tagging Data from Seasonally Reproducing Species (eqs. 12-19, 22), for 
a Set of Case Examples with Widely Varying Sample Sizes and Life History Characteristics. Parameters as Defined in Ta-
ble 1. ** Indicates Parameter Estimate at Constraint Boundary Largemouth bass (Micropterus salmoides) Populations are 
Florida West Coast River Populations that Use Estuarine Areas with Variable Salinity; Bass in the Homossassa River Feed 
Mainly on Smaller Prey Items than in the Chassowiska River [34]. Flathead Catfish (Pylodictis olivaris) Data from Intro-
duced Populations in North Carolina Rivers [34] 

    Six Parameters 
Estimated 

    Two Parameters Constrained 
(Qm=2,n=0.8) 

Species 
n fish 
aged 

n tag recaps H m d n Qm Qc  H m d Qc 

Humpback chub 18* 4000  1.97 0.13 0.60 1.16 1** 3.22  1.85 0.42 0.58 3.88 

Pygmy pikeminnow 2621 2032  1.28 0.53 0.64 0.81 3.89 8.76  1.50 0.57 0.63 6.05 

Flathead catfish 114 127  14.37 7.32 0.61 0.65 5.01 4.17  8.44 2.97 0.71 2.02 

Rainbow trout 308 658  20.16 8.06 0.52 0.62 1** 1.73  8.87 1.40 0.57 3.60 

Largemouth bass 
(Chassowiska) 

63 22  8.37 6.42 0.58 0.64 3.99 4.95  4.25 4.19 0.67 4.53 

Largemouth bass (Ho-
mossassa) 

47 44  5.79 1.10 0.32 0.66 1** 4.17  5.85 5.22 0.67 3.66 

 
dW/dt=HWd-mWn     (1). 

In bioenergetics modeling (e.g. the Wisconsin model, [7, 8]; 
[8]), H is typically articulated as a time-dependent product of 
temperature-dependent maximum feeding rate (Cmax), times 
proportion of maximum ration achieved (p), times constant 
assimilation efficiency, times 1-SDA where SDA represents 
specific dynamic action and active metabolic costs propor-
tional to food intake rate. Assimilation efficiency here ac-
counts for egestion and excretion losses, as well as the ratio 
of predator : prey energy densities. Standard metabolic rate 

mWn is represented by the parameter m, which varies with 
temperature according to some Q10 relationship. In such 
models, the anabolic rate HWd can be expressed as 
HWd=eR, where R is food intake rate (mass/time) or ration, 
and growth efficiency e is the product of assimilation effi-
ciency times 1-SDA. Given estimates of H and d, ration R 
can then be back-calculated simply as R=HWd/e, or given 
estimates of m, n and observed growth rates ΔW/Δt as 
R=(ΔW/Δt+mWn)/e. For such calculations, e is typically 
assumed to be in the range e=0.5-0.7, but will vary depend-
ing on prey type and energy densities [4, 5]. Note further 
that eq. (1) implies the asymptotic body weight  
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This relationship can be useful in constraining estimates 
of average H and m (and/or the power parameters n and d) 
given observations on asymptotic body weight. Further, it 
implies that n>d is a necessary condition for the model to 
predict a finite asymptotic weight (and length). 

Providing body condition factor remains relatively stable 
over time, i.e. the “parameters” a,b in the length-weight rela-
tionship W=aLb are constant, eq. (1) can be converted into a 
bioenergetics model for length L by noting that  

dL/dt=(dL/dW)(dW/dt)    (3) 

Noting that L=(W/a)1/b and substituting the derivative of 
this (dL/dW) along with eq. (1) into (3), elementary algebra 
shows that eq. (1) along with W=aLb implies 

dL/dt = αLδ-κLη     (4) 

where the parameters α,δ,κ, and η are given in terms of the 
weight growth parameters H,m,d, and n along with a,b of the 
length-weight relationship by  

α=ad-1H/b     (5) 
κ=an-1m/b     (6) 
δ=bd-b+1     (7) 
η=bn-b+1     (8) 

Eq. (4) implies the asymptotic body length L∞=(α/κ)1/(η-δ), 
and the model predicts a finite asymptotic length only if η>δ 
Feeding rate R can be back calculated from the relationship 
R=αabLbd/e. If incremental growth rate data ΔL/Δt are avail-
able (e.g. from short-term tag recaptures), a simple estimate 
of size-dependent feeding rate under the standard vonBerta-
lanffy assumption that n=1 is given by R=(baLb-

1/e)(ΔL/Δt+κL). 
As noted by Gurney and Nisbet (1998) [9] and Essington 

et al. (2001) [5], analytical solutions for L over time from (4) 
only exist in the special case n=1, i.e. standard respiration 
rate plus loss of reproductive products proportional to 
weight, and these solutions are called the “generalized Von 
Bertalanffy growth function (VBGF)” [3, 4]. The further 
assumptions that b=3 and d=2/3 result in δ=0 and η=1, and 
the integral of (4) over time is the standard von Bertalanffy 
growth function. Essington et al. (2001) [5] further note that 
estimation of α and κ using the standard VBGF (for which 
κ=K) typically result in downward biased estimates of the 
bioenergetics parameters m and H (by solving eq. (5),(6) for 
these quantities given empirical estimates of α and κ) if d is 
in fact greater than 2/3 (it is common in bioenergetics mod-
els to assume d is larger, e.g. 0.7) and/or n is less than 1.0 (It 
is common to assume n=0.8 as reviewed in Clarke and 
Johnston (1999) [10], though Essington et al. (2001) [5] pre-
sent metaanalysis data suggesting n=1 is a better default as-
sumption when reproductive expenditures are considered). 

ESTIMATION OF BIOENERGETICS POWER PA-
RAMETERS FROM LENGTH INCREMENT DATA 

Growth curves generated from numerical integration of 
eq. (4) with δ≠0 and κ≠1.0 (e.g. d=0.7, n=0.8) still look 

much like the classic VBGF, and can be fitted very closely 
by the VBGF. That is, data on body lengths at age typically 
cannot be used to estimate the power parameters δ and η, 
even if the data have essentially no random variation due to 
measurement errors and individual variation in the H and m 
parameters. H and m can only be estimated from age-length 
data if the d and n parameters (or δ and η) are known in ad-
vance, e.g. from laboratory bioenergetics studies. 

However, there is at least in principle some possibility of 
extracting information on d and n from examination of data 
on the relationship between growth rate (dL/dt) and length, 
as is collected in tag-recapture studies. Tag-recapture studies 
result in a set of body length measurements L1, L1, Δt (length 
at tagging, length at recapture, time between tagging and 
recapture). One simple way to examine such data is simply 
to plot the approximate growth rates ΔL/Δt=(L2-L1)/ Δt 
against the lengths at tagging. Providing all or most of the Δt 
are short (less than 2 yrs.), such plots will show evidence of 
concave curvature (higher dL/dt at for small fish than pre-
dicted from slope of the dL/dt vs L relationship for larger 
fish) if d<2/3 and/or n<1.0, whereas the VBGF predicts a 
linear relationship with slope -κ (Fig. 1). However, meas-
urement errors in L1 and L2 along with individual variation 
in α (i.e. in maximum body lengths L∞) typically conspire to 
make any curvature difficult to see or to demonstrate statisti-
cally. 

A more sophisticated approach to analysis of tag-
recapture data is to use some generalization of the Fabens 
(1965) method. In its original form, that method involves 
nonlinear estimation of L∞ and κ under the assumption d=2/3 
and n=1, by noting that length increments under the VBGF 
should vary on average as L2=L1+(L∞-L1)[1-exp(-κΔt)]. 
Various statistical improvements on the original Fabens re-
gression method have been developed [11-13] by looking at 
how the variances of the individual L2-L1 observations ought 
to depend on individual variations in L∞ and on κΔt. These 
methods have used the assumption that the “physiological” 
parameter κ ought not to vary much among individuals sub-
ject to similar thermal environments, while the “ecological” 
(feeding) parameter α ought to be highly variable due to 
individual differences in food availability and risk taking 
behavior [14]. It is easily shown that if the length observa-
tions are measured with normally distributed errors with 
variance σ2

m and individual L∞ values are normally distrib-
uted with variance σ2

L (and sampled L∞ values are independ-
ent of sampled L1 values), then the conditional distribution 
of each L2 observation, given observed L1 and given mean 
L∞ and κ, is normal with variance  

Vi= σ2
m(1+e-2κΔti) + σ2

L(1-e-κΔti)2   (9) 

Under this variance assumption, maximum likelihood es-
timates of L∞, κ, σ2

m, and σ2
L can be found (in principle) by 

maximizing the concentrated log-likelihood function 

lnL=-(N/2)SS-0.5Σiln(Vi)    (10) 

where SS is the sum over recapture observations i of the in-
verse-variance-weighted deviations Di

2/Vi and the deviation 
Di for each observation is given by  

Di=L2i-L1i-( L∞-L1i)[1-exp(-κΔti)].   (11) 
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Estimation experiments with simulated data indicate that 
this method should work quite well, except at distinguishing 
the variance components σ2

m σ2
L; typically one of these 

components must be specified a priori in order to obtain a 
reliable estimate of the other component. Unfortunately, no 
comparable statistical procedure can be developed for the 
general length dynamics model defined by eq. (4), since no 
analytical expression exists for the observation variances Vi. 

The estimation procedure defined by eqs. (9)-(11) can be 
readily used with the general growth model (eq. 4), provided 
we are willing to first fit the tag-recapture data to the special-
ized von Bertalanffy and to assume the variance estimates Vi 
(eq. 9) from that fitting are reasonable approximations for 
variances implied by the more general model. The only 
change needed then is to calculate the Di by numerically in-
tegrating eq. (4) to provide predicted changes in length: 
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That is, we take the predicted value of L2i to be the inte-
gral of dL/dt from the time of tagging for fish i t1i to the time 
of recapture t1i+Δti, where dL/dt is given by the differential 
eq. (4) with initial L=L1i. This numerical integration is very 
simple to perform in spreadsheets and statistical packages 
like R. Note that the estimation procedure can then involve 
up to 6 unknown parameters (α, δ, κ, η, σ2

m, σ2
L), though 

analysis on simulated data shows that not only the variance 
components σ2

m, σ2
L are difficult to separate but also effects 

of the power parameters δ, η since departures of either of 
these from the VBGF assumption can lead to any curvature 
that may be visible in the ΔL/Δt vs L (and length increment 
to recapture) data. 

ACCOUNTING FOR SEASONAL VARIATION IN 
FEEDING AND METABOLIC RATES 

Size at age and growth increment data from tagging are 
typically analyzed under the assumption that α and κ (or 
L∞,κ) have been constant over time. This assumption may be 
reasonable for examination of interannual changes, but it is 
badly violated in studies where growth data are collected on 
a seasonal basis in temperate systems.  

Nothing in the general numerical integration forms eq. 
(1)-(4) prevents us from treating H and m as time variable. 
For example we can calculate them using temperature-
dependent multipliers fc(Ti(t)) and fm(Ti(t)) where fc and fm 
represent relative feeding and metabolic rates as functions of 
the time course of water temperatures Ti(t) likely experi-
enced by fish i, using the more general growth model 

dW/dt=HWdfc(T(t)) - mWnfm(T(t))   (13) 

It is not generally possible to estimate the parameters of 
fc and fm just from observations of weight growth rates, but 
we can certainly use functions with parameter values esti-
mated from more complex bioenergetics analyses. In fact, 
ignoring such time dependence in α and κ can cause severe 
bias in parameter estimation where the tagging times ti are 
seasonally concentrated and when the Δti are relatively short, 
e.g. when the fish are all captured and recaptured during a 

summer sampling season when both α and κ are likely to be 
well above the annual average.  

For fitting data on seasonal weight changes and tag-
recapture weight data using eq. (13), we recommend using 
the following relatively simple forms for fc and fr: 

fc(T)=Qc
(T-10)/10e-g(T-Tm)/(1+e-g(T-Tm))   (14) 

fm(T)=Qm
(T-10)/10     (15) 

Here, Qm and Qc are Q10 coefficients, typically around 
2.0 for Qm [15] and often much larger for Qc since Qc typi-
cally represents increase with T in both digestion rates and 
food availability. Ta represents annual average temperature 
(so that H and m represent feeding and metabolic rates at 
T=10oC). The exponential ratio in eq. (14) represents drop in 
feeding at high temperatures; Tm represents the temperature 
at which feeding rate drops to half the value predicted from 
Qc, and g represents how rapidly feeding drops off as Tm is 
approached.  

We can also write a relatively simple bioenergetics 
model like eq. (13) for length growth by using eq. (4), which 
we call the CA (continuous allocation) model. But this for-
mulation must be used with care since it is often unwise to 
assume constant length-weight allometry (constant a,b in 
W=aLb) to back-calculate predicted length changes from 
integration of eq. (13) for cases where weight changes have 
not been measured. The problem with such a simple trans-
formation is that body condition (as measured by a,b) is 
likely to change with seasonal changes in feeding opportuni-
ties and loss of weight (but not length) to reproductive prod-
ucts. We address the prediction of length changes for eq. 
(13) in the next section.  

However, we note in passing that for cases where body 
condition does not show strong seasonal variation, body 
length dynamics are expected to follow eq. (4) with fc(T) 
multiplying α and fm(T) multiplying κ. For such cases, diag-
nostic plots of ΔL/Δt from seasonal tagging data (e.g. over 
summer recaptures versus over winter recaptures) should 
show an interesting feature provided temperatures are always 
well below Tm. Namely, the X-intercepts of the seasonal 
plots (estimates of L∞) should vary approximately as (Qc/Qm) 

(T-Ta)/10 and should not vary at all if Qc=Qm. An example of 
this effect is shown in Fig. (1) for rainbow trout (Oncorhyn-
chus mykiss) from Cabin Lake, Alberta. Summer mean tem-
perature is below 20oC in this lake, and winter temperature 
averages around 3.5oC, so temperature is always well below 
the typical Tm for rainbow trout. The plots of ΔL/Δt from 
over-summer tag recaptures show the similar L∞ as for plots 
of over-winter recaptures, indicating Qc≈Qm. Fits to the tag-
ging data using numerical integration of eq. (4) with fc and fm 
multipliers, and Qc,Qm allowed to vary in the fitting give 
Qc≈3.0 and Qm≈2.6, again implying a seasonal change of 
only 10-15% in L∞. 

It is not just seasonal temperature changes that can create 
apparent changes in α and κ, or make the size-dependence 
power parameters δ and η appear differ strongly from 2/3 
and 1.0. In particular, it is not unusual for fish to show onto-
genetic habitat shifts from relatively warm juvenile nursery 
areas to cooler adult residence areas; for example the po-
tadromous humpback chub (Gila cypha) in the Grand Can-
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yon, Arizona, typically begins to move around maturity (age 
3-4, 250mm body length) from relatively warm nursery areas 
in the Little Colorado River into the much colder waters (due 
to an upstream dam) of the Colorado River mainstem for 
most of each year. For this population, diagnostic plots of 
dL/dt versus L (Fig. 2) show a “kink” at about the size where 
migration to the mainstem begins, with younger fish show-
ing apparently higher κ and lower L∞ values than older fish. 
Estimation using eq. (12) on over 16000 tag-recapture ob-
servations [15] results in δ=-1.25 and η=-0.13 (d=0.25, 
n=0.62), both unrealistically small and indicative of a 
strongly curved dL/dt vs L relationship independent of tem-
perature effects. Even when n is constrained to 1.0 (implying 
η=1, Generalized von Bertalanffy model), the estimated d is 
unrealistically low (d=0.10, δ=-1.69). But effects on growth 
parameters of the habitat shift could easily be misinterpreted 
as evidence for power parameters differing from 2/3 and 1, 
when in fact it is not possible to decide from the length in-
crement data whether or not the fish follow a simple VBGF 
within each of the two life history stanzas. Fortunately, for 
purposes of avoiding downward bias in estimation of food 
consumption rates as Essington et al. (2001) [5] describe, it 
does not really matter whether the apparent low δ and η are 
actually due to size allometry or to size-dependent changes 
in habitat temperatures; the net effect of either on calculation 
of R is the same. 

ACCOUNTING FOR PERIODS OF ZERO LENGTH 
GROWTH AND ALLOCATION TO GONADAL 
PRODUCTS (DYNAMIC CHANGE IN CONDITION 
FACTOR)  

This section develops a more complex model that we call 
SRSA (seasonal reproduction, skeletal allocation) to repre-
sent the more complex length and weight dynamics implied 
by seasonality in loss of energy to reproductive products and 
variable allocation of food intake to growth in length (skele-
tal growth) versus weight. A key assumption in the non-

seasonal CR model above for extracting information about 
bioenergetics parameters from length data is that the length-
weight relationship is stable over time, i.e. that body fatness 
or condition factor (as measured by indices like W/Lb) re-
mains stable as assumed by Gurney et al. (2007) [9]. This 
assumption may be reasonable for examining interannual 
growth patterns, but it can be badly violated in analysis of 
seasonal data due to dynamic changes in body weight (e.g. 
release of reproductive products, decline in weight during 
winter food shortages) that are not accompanied by de-
creases in length. To account for such changes, it is possible 
to model the allocation of growth resources to at least two 
components of body mass, “structural” tissue (bone, carti-
lage, etc.) that is not metabolized and “reserve” or metabo-
lizable tissue (fat, muscle, etc.) that may be used to satisfy 
metabolic demand during periods when food intake cannot 
satisfy those demands [17-20]. Body length is then repre-
sented as a power function of the structural tissue mass. A 
key advantage of this approach is that it avoids potential mis-
interpretation of age-length data in cases where length ap-
pears to decrease with age for older fish (e.g. Fig. 2 in the 
Hayes et al. 2000 analysis of a New Zealand brown trout 
population [1]); such decreases are most likely due to selec-
tive mortality of larger individuals rather than loss in length 
by fish that are declining in body weight. A further advan-
tage is in allowing explicit representation of energy alloca-
tion to reproduction, with the possibility of using reproduc-
tive energy allocation parameters predicted from evolution-
ary theory [20].  

Suppose we partition body weight W into two compo-
nents, structural weight Ws and metabolizable weight W-Ws. 
Then the dynamics of Ws can be represented by either the 
Broeckhuizen et al. (1994) [17] assumption that a proportion 
fs of total growth rate is allocated to Ws provided total 
growth is greater than zero: 

dWs/dt = fs Max(0,H’Ws
d-mWn)   (16) 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Plots of growth rates (change in length per time,ΔL/Δt) for tagged fish are predicted to decline linearly with body size under the 
vonBertalanffy model, with slope equal to 0.33 times the annual metabolic rate per body weight.  These data for spaghetti tagged rainbow 
trout from Cabin Lake, Alberta show apparently linear relationships with much lower metabolic rate for overwinter recaptures. 
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or the Jones et al. (2002) [19] assumption that a fraction fs of 
net assimilated food intake (eR) is allocated to structural 
growth whether or not body weight is growing: 

dWs/dt=fseR=fsH’Ws
d    (17) 

Note that for both of these cases, we need to assume that 
the food intake rate component of dW/dt (e.g. in eq. 13) is 
proportional to a power of Ws rather than total W (which 
requires rescaling of H from eq. 1 and 13 to H’=H/f*s

d where 
f*s is the “normal” ratio of ws to w); otherwise we would 
incorrectly predict (using Hwd) that food intake rate should 
decrease even after “normal” loss events of metabolizable 
tissue (such as release of reproductive products), which do 
not in fact impair feeding or digestive ability. Note further 
that eq. (13) predicts standard metabolic rate from total W 
rather than metabolizable tissue weight W-Ws; this (techni-
cally incorrect) simplification allows use of laboratory data 
on m, n measured as a function of total weight W, and is a 
reasonable approximation except in cases of near starvation 
(very low (W-Ws) relative to the normal Ws=(1-f*s)W condi-
tion). 

Eqs. (16) and (17) place the burden of predicting changes 
in body condition, as indexed by Ws/W, on predicting the 
fraction fs of net intake allocated to growth of Ws. Simply 
assuming constant fs=f*s in eq. (13), independent of age or 
total weight, does result in weak apparent “compensation” in 
the form of reduced allocation to length growth when food 
intake is low and/or metabolic rate is high, but does not in 

general predict rapid or full restoration of body condition for 
older fish after loss of weight to reproductive products. Eq. 
(17) further requires that fs be made a decreasing function of 
total body weight even when there are no disturbances such 
as release of eggs, according to some function of the general 
form 

fs = f*s(1-(m/H)Wn-d)    (18) 

Without this progressive correction for larger fish, allo-
cating a constant fraction fs of intake to non-metabolized 
tissue would result in progressive increase with age in the 
Ws/W ratio, i.e. in fish becoming progressively thinner with 
age. We recommend modeling “compensatory” adjustments 
in fs when predicted Ws/W≠f*s as suggested by [17, 18], by 
multiplying f*s at each moment (or the weight-adjusted fs of 
eq. (18) at each moment when Ws is modeled by eq. 17) by a 
feedback function fs=f*sC(Ws,W), where C=1 for Ws/W=f*s 
and varies with “thinness” Ws/W as 

C(Ws,W) = 2/[1+exp(-θ(f*sW-Ws))]   (19) 

This is a logistic function that sets C to a maximum of 2 
(i.e. allocates up to double the intake resources to skeletal 
growth when the fish is plump), and drops C toward 1.0 as 
Ws/W approaches f*s with steepness set by θ. This function 
is essentially a simple approximation to more complex state 
dependent allocation rules that can be derived using dynamic 
programming methods [21].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Growth rate (ΔL/Δt) based on PIT tag returns of humpback chub from the Little Colorado River spawning stock, Colorado River, 
Grand Canyon, Arizona.  Note apparent change in metabolic rate (slope of regression relationship) at 200-300mm, the size-age range when 
these fish begin to emigrate from the relatively warm Little Colorado River to spend much of the year in much colder mainstem Colorado 
River water.  General growth model (eqs. 13-15) fits are shown with and without including auxiliary information on size at age for fish too 
small (<150mm) to PIT tag; auxiliary growth data from [16]. 
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When θ is large (>50; implying highly sensitive response 
of fs to deviations from “normal” W / Ws), eq. (16) and (17) 
with fs predicted from eq. (19) predict essentially identical 
trajectories of growth in W and L (assuming L=a’Ws

1/3), as 
shown for a simulated pikeminnow (Ptychocheilus ore-
gonensis) example in Fig. (3). For this example, we assumed 
strong seasonal temperature modeled by a sin curve (max 
T=16 oC, min T=4 oC), Qc=2.5 in eq. 14 to create negative 
weight change at low temperatures, and we subtracted 
0.15W from weights of older fish at the start of simulated 
summer, to simulate release of reproductive products (15% 
of body weight). 

Note that the example simulation (Fig. 3) shows declin-
ing body condition with age, i.e. an overall b<3.0. This is 
typically seen with the simple feedback rule eq. (19), and 
may be realistic for some fish species [22]. A more complex 
rule than eq. (19) is needed to represent the possibility of 
b>3.0, i.e. some fish like carp tend to fatten as they age 
rather than never quite making up for weight losses associ-
ated with reproduction and seasonal food shortage (or sea-
sonal high metabolic cost). A simple way to represent such 
allocation strategies is to modify the exponent term of eq. 
(19) downward for high W, i.e. to make f*s a decreasing 
function of W, by multiplying it in the exponent by a factor 
like (1-W/W∞)0.1 (a low power like 0.1 in this multiplier 
causes the modified target f*s to decrease only for larger fish 
that are approaching W∞). 

Eqs. (13)-(15) and (16) or (17) plus (18) and (19) define 
the complete SRSA seasonal bioenergetics model for growth 
in body weight and length if length is assumed to be a simple 
function of structural weight (e.g. L=a’Ws

1/3) and if the nor-
mal structural weight proportion f*s is known (or assumed to 
be any small proportion like 0.1). In principle this model can 
be fitted to size-time and size-increment data, given seasonal 
temperature patterns T(t) so as to estimate up to 9 parameters 
(H,m,d,n,Qm,Qc,g,Tm, and θ). However, as noted above it is 
typically not possible to estimate both of the power parame-
ters d and n, and it is further reasonable based on the 

metaanalysis in [5, 10] to assume 0.8≤n≤1.0, and on the 
metaanalysis of Clarke and Johnston (1999) [10] to assume 
1.8≤Qm≤2.4. We recommend initially fixing these parame-
ters at n=0.8 (or 1.0 if weight loss to reproduction is ig-
nored), Qm=2, then examining whether other parameter esti-
mates, particularly d and Qc, appear to be reasonable (see 
humpback chub case above for an example of apparently 
unreasonable d, caused by systematic change in water tem-
perature with age and weight). In many cases, it is also rea-
sonable to set g to some large value (e.g. 10) and Tm to well 
above the maximum observed temperature, i.e. to assume 
that temperatures never exceed the optimum for growth; it is 
easy to check for violation of this assumption, by examining 
changes unrelated to reproduction in body condition at high 
temperatures (declining condition at high T is an indication 
that T is not far from Tm, implying Tm cannot be ignored). So 
in “best” case situations, it should be possible to reduce the 
number of parameters to be estimated to 5, or even 4 if θ is 
assumed large. 

As a case example of using this model for a species that 
shows large, annual energy losses to reproduction, we fit it to 
data on brown trout from the Maruia River, New Zealand in 
Hayes et al. (2000) [1], and compared its predictions to the 
results of their complex bioenergetics model that included 
predictions of prey availability, search, and consumption. 
Hayes et al. note that mature brown trout (ages 4+) lose up 
to 46% of their energy content at spawning, so that growth 
virtually ceases after maturation and older fish show declines 
in both length and weight (Fig. 4). Hayes et al. do not show 
the details of their seasonal energy content predictions, but 
presumably their calculations have the same sharp drop in 
energy content at spawning times for older fish as shown for 
our model. Lacking seasonal growth data to estimate Q10s, 
we used their estimates of Qm=7.69 and Qc=5.53 from 
Elliott’s (1976) [23] studies, set n=1, and estimated H,m, and 
d by fitting to their length and weight data using a simple 
weighted least squares criterion (each data point weighted by 
inverse of expected variance due to measurement errors and 
individual variation in asymptotic body size). We manually 

 

 

 

 

 

 

 

 

 

 

Fig. (3).  Simulated growth in length and weight for a pikeminnow with parameter values estimated from pygmy populations of the Bona-
parte Plateau, British Columbia.  Note predicted winter weight loss and loss in weight of larger fish at time of spawning (early July). 
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varied the allocation parameters θ and W∞ to see if we could 
obtain declines in pre-reproductive body weight with age, 
but we were unable to find any parameter combination that 
predicted such declines while still fitting the data by fitting 
H,m, and d. Our H and m estimates agree fairly well with 
Hayes et al. in predicting feeding rates and in predicting 
about 20% of energy input allocated to size-dependent (stan-
dard) metabolism, and d=0.76 is essentially identical to 
Elliot’s (1976) [23] estimate. However, our assumed n=1.0 is 
much higher than Elliot’s estimate of 0.77; assuming n=0.77 
led to grossly unrealistic estimates of m and overestimates of 
weights at older ages). We do not predict declining length or 
weight at older ages, and we suspect that observed declines 
in length and weight are indicative of selective mortality of 
larger or faster-growing individuals rather than negative en-
ergy balance for older individuals, a possibility that Hayes et 
al. admitted as well. 

ESTIMATION OF INDIVIDUAL GROWTH DEVIA-
TIONS AND AGES FROM LENGTH INCREMENT 
DATA FOR SEASONALLY REPRODUCING SPECIES 

Wang et al. (1995) [24] and Wang (1998) [25] noted that 
individual asymptotic body lengths and apparent ages at tag-
ging can be estimated from length at tagging, length incre-
ment, and time to recapture when all individuals have the 
same metabolic parameter (von Bertalanffy K) but differ in 
L∞. However, these estimates assume no measurement errors 
in L1i and L2i, and also assume that animals can be of any age 
at tagging (continuous reproduction). For seasonally repro-
ducing species, each individual can only be one of a discrete 
set of ages, so that the Wang method may produce nonsense 
ages for many individuals when length measurement errors 
are large. Correcting these problems leads to a likelihood 
function for the L1i,L2i measurements that is less prone to 
bias than eq. (10), and at the same time provides an estimate 
of the age distribution of the tagged fish. 

For any of the growth models above, individual variation 
in feeding rates (but not metabolic rates), i.e. in L∞, can be 

represented as a multiplicative departure Ri of individual i’s 
size at age from the population mean size, i.e. Li1= L(a1i )Ri, 

plus a measurement error, Li2= L(a1i +!ti )Ri. plus a meas-
urement error. Here a1i is the age of fish i at tagging (an inte-
ger year plus deviation of capture date from date when a=0. 
L(a)  is the population mean growth function, dependent on 
length at first modeled age 0 and on all the parameters (H, m, 
Q10’s, etc.) used to predict mean length over time and age. 
Assuming normally distributed, independent measurement 
errors with variance σ2

m and normally distributed sample Ri 
with mean 1.0 and variance σ2

R, it is easily seen that the 
maximum likelihood estimate of Ri given any assumed age 
a1i is given by  

R̂
i
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  (20) 

This estimate of R is just the weighted average of the two 
L/ L observations, but corrected toward 1.0 in cases where 
σ2

R is assumed small compared to the measurement variance. 
The log-likelihood of each Li1,Li2 observation i given this 
maximum likelihood estimate of Ri is then proportional to 
(ignoring constant terms shared by all observations) 

lnL i(a1i)=-[( )(R̂ 1ii
a i11 L)( !

i
aL )2+( )(R̂ 1ii

a  

i21 L)( !"+
ii
taL )2]/σ2

m-( )(R̂ 1ii
a -1.0)2/σ2

R     (21) 

This likelihood term for each fish also represents the Ja-
coby approximation to the total likelihood of the Li1,Li2 ob-
servations, integrated over possible “process errors” Ri. 

Eq. (21) can be used in two ways. First, the discrete a1i 
that maximizes eq. (21) is the maximum likelihood estimate 
of the age of fish i at tagging. Second, summing such maxi-

 

 

 

 

 

 

 

 

 

 

Fig. (4).  Simulated growth in length and weight for New Zealand brown trout, compared to model predictions by Hayes et al. (2000) [1].  
Data and model results extracted from Fig. 2 in Hayes et al. 
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mum likelihoods over fish i represents a likelihood function 
for the data, comparable to eq. (10): 

lnL =
a1i

i

max
i

! [lnL
i
(a1i )]                    (22) 

In simulation tests with fake data generated for fish with 
discrete ages, using this likelihood function for estimation of 
bioenergetics parameters results slightly more precise pa-
rameter estimates than eq. (10), with no apparent bias. (the 
dependence of it on parameters H, m, Q10’s etc. is via the 
predicted mean lengths ). Though eq. (22) is not strictly a 
smooth function of the parameters, it does not appear to 
cause nonlinear search procedures like Excel’s Solver to 
“hang” near parameter combinations for which there are dis-
crete changes in the function. 

Estimation performance with eq. (22) should be im-
proved considerably by including auxiliary information on 
lengths at age for a sample of fish aged by modal progres-
sion or counts of annuli on hard parts. Suppose such a sam-
ple of j=1…n fish of lengths Lj at ages aj is available. To 
include such independent size-at-age data in the log likeli-
hood function (either eq. 22 or the simpler eq. 10) while as-
suming normally distributed deviations around mean lengths 
at age, simply add the following term to ln L: 

! (L j !L(a j))
2 / (" DL(a j))

2
+  ln(" DL(a j))

#$ %&
j=1

n

'    (23) 

This term is simply the normal log-likelihood omitting 
additive terms that are constants or depend only on the data. 

It is not a trivial task to maximize the likelihood function 
(sum of eq. 22 and 23), since this function can have discrete 
jumps associated with the discrete individual age parameters 
and also with discrete time solution of the predicted mean 
lengths at age. However, the maximum of the function can 
be found by using Markov Chain Monte Carlo (MCMC) 
sampling, treated as a random search method, while simulta-
neously mapping the function so as to provide assessments 
of uncertainty for the parameter estimates. We recommend 
using a two-step estimation procedure: (1) first use Solver in 
an Excel implementation of the model to search for parame-
ter estimates that roughly fit the data, then (2) use MCMC 
sampling starting from these initial parameter estimates to 
map the likelihood function. An example spreadsheet to do 
(1) and a Visual basic application to do (2) are freely avail-
able from the senior author; the spreadsheet and visual basic 
files include the complete data used by Taylor and Walters 
(this supplement) for the pygmy pikeminnow case study. 

As an example of using the likelihood eq. (22)-(23) for 
estimation and age reconstruction, we examined a tagging 
and otolith age data set currently being collected for pygmy 
pikeminnow from lakes of the Bonaparte Plateau, British 
Columbia [26]. This data set contains both over-summer and 
fall to early summer (with some period of fall and spring 
growth) tag recoveries (2032 fish), and a large sample of fish 
aged by otoliths (2621 fish) of which a small subset (181 
fish) were also tag recoveries thereby allowing comparison 
of otolith age to the estimated age determined by maximiz-

ing eq. (21) over age. The sampled lakes are all cold, with 
maximum summer temperatures rarely exceeding 20oC and 
with a very short growing season (2-4 months) when tem-
peratures are above 4Co. Fits of the general bioenergetics 
model with temperature effects (eqs. 13-15) resulted in pre-
dicted body lengths declining during winter, with high esti-
mates for Q10 parameters (Qc, Qm) implying that growth 
virtually ceases at temperatures below 6-8Co. Similar esti-
mates were obtained when we fit the data using eqs. 14-15, 
16, and 18-19, which constrain length growth rate to be zero 
or positive (Fig. 3, Fig. 5). The Qm (metabolism) estimates 
ranged from 2-10 depending on assumed ratios σ2

m/σ2
R, 

varying around the value of 2.97 obtained in laboratory stud-
ies (Cech et al. 1994) [32], and the predicted decline in ef-
fective body weight during winter is in good agreement with 
predictions from bioenergetics models for this species [27] 
and with winter tagging studies in Cultus Lake by Steigen-
berger (1972) [28]. Estimated Qc (6.0-12.0 depending on Qm 
estimate) imply a roughly 10-fold increase in feeding rate as 
temperature increases from 10 to 20oC; this surprisingly 
abrupt increase agrees well with laboratory estimates of tem-
perature effects on digestion rate for Cultus Lake, B.C. 
pikeminnow [29] (Bonaparte plateau and Cultus Lakes are in 
the same, Fraser River watershed). Only the net scope for 
growth is “visible” in growth data, and the fitting procedure 
traded off H,m, Qm, and Qc so as to give nearly the same 
pattern of variation in growth rate with temperature (Fig. 5) 
while varying Qm widely (that is, the data do not provide 
enough information to estimate all four parameters inde-
pendently). This instability in the Q10 parameter estimates 
was not alleviated by simultaneously fitting both the tagging 
data and the otolith size-age data.  

As expected from applying the age estimation procedure 
to simulated data with substantial measurement error and 
individual variation in growth rates, the pikeminnow age 
estimates from tagging vary widely around those obtained 
from otoliths for the small sample of tagged pikeminnow 
that were actually aged at recapture (Fig. 7). Interestingly, 
the estimated individual growth deviations Ri warn that there 
was size-selective sampling (bias toward including faster 
growing individuals in the sample) as found by Taylor et al. 
(2004). Despite the imprecision in aging, catch curves con-
structed from the otolith age data and from ages of all recap-
tured fish (Fig. 6) result in very similar estimates of total 
mortality rate (Z=0.24 from tag data, 0.27 from tagging for 
ages 5-19, and 0.27 for both data sets using ages 6-19). Fur-
ther, the age reconstruction from tagging clearly shows how 
tagging was restricted to older, larger fish that were thought 
capable of carrying spaghetti tags without severe adverse 
behavioral effects. 

The pikeminnow case can also be used to examine a 
question commonly asked of bioenergetics models, namely 
whether the parameter estimates can be used to predict 
changes in growth under altered physical conditions, particu-
larly changes in temperature patterns (as might happen for 
example under global warming). Taking the Bonaparte pla-
teau parameter estimates, we replaced the seasonal tempera-
ture pattern with known patterns for two warmer lakes where 
pikeminnow growth patterns have been measured, John Day 
Reservoir on the Columbia and Cultus Lake in the lower 
Fraser River watershed. For both of these cases, bioenerget- 
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Fig. (5). Diagnostic plots for spaghetti tag returns of pikeminnow from lakes of the Bonaparte Plateau, British Columbia.  A— over-summer 
versus fall-spring growth rates (ΔL/Δt); B—Scope for growth (growth rate under constant temperature, solid line) compared to measured 
growth rates for individuals in relation to mean temperature over the period from tagging to recapture; note that individuals showing positive 
growth at low mean temperature are estimated to have achieved that growth during fall and spring periods when temperature was well above 
the average over the period from tagging to recapture.  C—maximum likelihood estimates of relative growth rate (Ri) for individuals included 
in the tag recapture sample; note bias toward inclusion of faster-growing, larger individuals at younger ages. 
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Fig. (6).  Comparison of ages and mortality rates estimated from otoliths to ages and rates calculated from tag-recapture sizes, for pikemin-
now from the Bonaparte Plateau, British Columbia.  A—maximum likelihood age estimate versus otolith age estimate for a sample of indi-
viduals that were aged upon recapture (n=181 fish).  B—Catch curves (log number of fish at age) constructed from otolith ages (n=2621) 
versus ages estimated from mark-recapture sample (n=2032). 
 
ics studies and fits to vonBertalanffy growth curves indicate 
similar catabolic (K) parameters to what we estimated for the 
Bonaparte populations. But for both, the Bonaparte fitted 
model substantially underpredicts growth rate and maximum 
body length for older fish (Fig. 7). Very likely the problem 
here is with the anabolic (feeding rate) parameter H; the 
Bonaparte fish have only a limited invertebrate food supply, 
while small fishes (e.g. juvenile salmonids) are abundant and 
consumed regularly in the two warmer systems. Estimates of 
the size allometry power parameters (d,n) support this inter-
pretation. When we allowed d,n to vary from default values 
of 0.67 and 1.0 (specialized vonBertalanffy model), the pa-
rameter estimation failed (too many parameters). But when 
we constrained the metabolic power parameter n to the upper 
end of the range of values reported in laboratory studies 
(0.93) there was a slightly poorer model fit (ΔlnL=-
2.42,ΔAIC=-0.42), but the resulting estimate of d=0.61 im-
plies slower increase in feeding rate with body size than 
would be predicted from laboratory estimates, as expected 
when fish prey are not available to the larger individuals. 

Laboratory studies [27, 30, 31] would predict d to be much 
larger, around 0.8 (0.72 to 0.89) and n to be lower, around 
0.72 (0.52 to 0.91). 

Our estimated metabolic parameter m (0.235, annual 
metabolic loss per body weight at 10oC)) is remarkably close 
to the Cech et al. (1994) [31] estimate of 0.25 for 800 g fish. 
However, their estimate of n (0.72) extrapolates a much 
higher metabolic rate per mass (0.49) at 10oC for the smaller 
(60 g) Bonaparte fish. Forcing the model with the Cech et al. 
estimates, while estimating only H, d, and Qc, results in es-
timated d=0.55, Qc=41.8; these estimates reverse the predic-
tions in Fig. (7), implying much larger asymptotic body sizes 
in warm environments than observed, and a considerably 
poorer fit to the data (ΔlnL=-5.97). 

DISCUSSION 

Our estimates of ontogenetic and seasonal changes in 
consumption rates for the case examples are in general 
agreement with expectations from more detailed bioenerget-
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ics modeling. For the cyprinid species, we estimate very low 
peak consumption rates by adult fish, on order 0.2-0.4% per 
day. We estimate peak consumption rates for adult trout of 
1-2% per day. For all the species, we estimate consumption 
rates to decline with age so as to reach these low adult rates 
by about age 3. 

For those who need to use bioenergetics analysis for pur-
poses such as estimation of food consumption rates, but are 
suspicious about basing such analysis on food consumption 
and metabolic relationships derived under laboratory condi-
tions or about “borrowing” parameters from other species, it 
appears from the examples reviewed above that some bio-
energetics information can be recovered from field tagging 
and body size information. In particular it is possible to rep-
resent effects related to seasonal changes in rates due to tem-
perature (via fc and fm functions), and to determine the effect 
of such changes on estimation of summary quantities such as 
annual food consumption (integral of ration estimates R over 
time). It appears possible to use the simple CR model in 
some cases like Cabin Lake rainbow trout and pikeminnow 
to estimate Q10 coefficients for temperature dependence of 
feeding and metabolism from field data alone, a task typi-
cally relegated to laboratory studies. 

It is less often possible to recover information about pat-
terns of body size allometry, particularly in feeding rates. As 
shown in the humpback chub case, body size effects are 
likely to be confounded with effects of seasonal and ontoge-
netic habitat shifts that alter temperature patterns encoun-
tered by animals as they grow. However, the humpback chub 
example also suggests that growth information may be useful 
in a reverse way, for estimating when ontogenetic shifts into 
different thermal regimes are most likely to have occurred. 
The field mass dependence pattern may also be due to re-
strictions in food availability for larger individuals (as in the 
pikeminnow case). 

The humpback chub and pikeminnow examples suggest 
an important challenge for bioenergetics models that predict 
intake and metabolism from size and temperature only. In 
these examples, small juveniles appear to actively seek 
warmer environments (tributary streams, warm shorelines) 
than larger fish, suggesting that their scope for growth is 
maximum at lower temperatures. Such size-dependent 
change in optimum temperature (T for which dW/dt is 
maximum) is predicted by the models described in this paper 
even when the same fc(T) function is used for fish of all 
sizes, except when Qc>>Qm (consumption rate changes much 
more rapidly with temperature than metabolism rate). Labo-
ratory estimates of Q10s for food consumption (Qc) do not 
account for changes in food availability that are correlated 
with temperature, and it is entirely possible that effective Qc 
values are commonly low under field conditions, especially 
for larger fish simply because larger fish tend to target larger 
food organisms (e.g. small fish, insects) that have less sea-
sonal variability in abundance than the food organisms tar-
geted by small fish (e.g. zooplankton). Lower Qc for gener-
ally implies maximum scope for growth at lower tempera-
tures, especially if that lower value applies selectively to 
larger fish. To model such selective effects, the fc(T) func-
tion would need to be replaced by a more complex fc(W,T) 
function, for which the effects of W on Qc cannot be esti-
mated from laboratory studies if these effects derive from 
effects at field scale on food availability. 

Unfortunately we cannot offer any reliable general guide-
lines about conditions that field data must satisfy in order for 
the mass power parameters and/or temperature coefficients 
to be reliably estimated. Careful Monte Carlo simulation 
studies of probable estimation performance, and analysis of 
parameter uncertainty by the usual methods (parameter co-
variance matrices, MCMC sampling of likelihoods and pos-
teriors) need to be done on a case-by-case basis. We can say 
that tagging data appear to be better for estimation of bio-
energetics parameters than data on size at age, particularly in 

 

 

 

 

 

 

 

 

 

 

Fig. (7).  A test of whether the bioenergetics model for Bonaparte plateau pikeminnow can successfully predict growth patterns in warmer 
lakes.  Bonaparte fitted model was supplied with annual temperature patterns from Cultus Lake and John Day Reservoir, without any 
changes in the anabolic or catabolic parameters.  Note gross underprediction of growth rates for the two warmer lakes.  Cultus measured 
body lengths from Steigenberger (1972) [28]; John Day lengths from Rieman and Beamesderfer (1990) [32]. 
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cases where many tags are recovered after exposure to just 
one strongly contrasting seasonal temperature regime (sum-
mer or winter). We encourage the use of pairs plots from 
MCMC sampling to assist in determining which particular 
parameter estimates are most badly confounded, for example 
such plots reveal severe confounding of H and m, d and n in 
the pikeminnow example (Fig. 8). 

We hesitate to recommend using the relatively complex 
SRSA model that includes allocation to skeletal vs somatic 
growth (eqs. 16-19) except in cases like the pikeminnow 
where there are extended seasonal periods of zero length 
growth or cases like the New Zealand brown trout where 
there are large seasonal energy losses to reproduction. The 
overall parameter estimates from this model were not much 
different from those obtained with simpler models that pre-
dicted negative length growth in winter, it was very difficult 
to manually choose reasonable values for the allocation pa-
rameters, and statistical estimation procedures for any model 
with discontinuous changes (allocation to skeletal tissue cut 
as growth approaches zero) are prone to difficulties due to 
discontinuous derivatives of the likelihood function with 
respect to the parameters. Perhaps such models can be better 
parameterized for cases where auxiliary information on ca-
loric content or dry weight of fish at recapture has been ob-
tained (wet weights are likely to be misleading due to 
changes in water content of fish that have lost much somatic 
mass, eg through reproduction), but we do not have access to 
test data from any such cases. 

While we found the bioenergetics parameter estimates to 
be relatively unstable, i.e. a wide range of estimates could 
almost equally well explain observed growth patterns, such 
uncertainty does not directly imply high uncertainty in esti-
mates of food consumption rate. As noted above, consump-
tion rate estimates are basically a “backcalculation” of the 
form R=(dW/dt+mWn)/e. So if the model fitting procedure is 
successful at finding parameter values that fit the observed 
dW/dt pattern, and if the m,n parameters for standard me-
tabolism are reasonably estimated, then ration R will be rea-
sonably well estimated up to uncertainty about assimilation 
efficiency and SDA (the e parameter). Since only the product 
eR is visible in field growth data, there is no way to use such 
data to estimate e separately from the H,d,Qc parameters 
used to predict eR.  

To further evaluate the possibility that estimated ration 
patterns are relatively insensitive to problems in estimation 
of some model parameters, we fitted the more complex 
SRSA model (eqs. 12-19) using the likelihood function that 
assumes seasonal reproduction (eq. 22) to six data sets for 
which the model is being used by colleagues (Table 3). We 
first constrained two metabolic parameters to reasonable 
values based on laboratory studies (Qm=2.0, n=0.8), which 
resulted in reasonable estimates for H,m,d, and Qc. Then we 
freed Qm and n to vary in the nonlinear estimation procedure, 
which resulted in unrealistic values for at least some parame-
ters for most cases (e.g. Qm<1.0). Despite the unrealistic pa-
rameter values from the larger parameter search, calculated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Pairs plot of MCMC results from 100,000 samples of the likelihood function for the pikeminnow data, complex bioenergetics model 
and likelihood assumptions. Contours indicate parameter combinations with high likelihood; parameter correlations shown in upper right 
panels. 
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ration vs age relationships were very similar to (within 10% 
of) those from the constrained search and from fitting sim-
pler models, for the large-sample cases (humpback chub and 
pikeminnow). But for the four small sample cases, predicted 
life-time total food consumptions were as low as 50% and as 
high as 250% of those predicted by the constrained model 
and by the simpler bioenergetics model without seasonal 
reproduction and skeletal dynamics (Fig. 9). 

A disappointment in this study was that we were unable 
to test predictions of the SRSA model about seasonal 

changes in condition factor (CF) and to develop good esti-
mates of the skeletal allocation parameters θ and W∞. By 
varying W∞, we were able to reproduce observed differences 
among the case species in progressive change of CF with 
age. The catfish and largemouth bass data sets show substan-
tial increase in CF, to mean values around 1.2 for older fish, 
whereas the brown and rainbow trout data show declining 
CF after maturity. No clear pattern with age was evident for 
humpback chub and pikeminnow. But we could see no clear 
seasonal pattern in CF for any of the species, and in particu-
lar we could not see the sharp drop and rapid recovery in CF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9).  Comparison of predicted lifetime food consumption rates for various species used to test model fitting procedures, using parameter 
estimates for these species (Table 3) obtained with and without constraining Qm and n parameters. (a) humpback chub, (b) pikeminnow, (c) 
flathead catfish, (d) rainbow trout, (e) Chassowiska River largemouth bass, (f) Homossassa River largemouth bass.  Estimates with Qm, n 
constraint shown in gray. 
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predicted to be associated with spawning. Two factors evi-
dently masked the sharp drop that individual fish are likely 
to have shown: rapid replacement of mass lost to gonadal 
products by water content (which would only be visible in 
measurements of energetic content rather than total body 
weight), and asynchrony among individuals in spawn timing 
so that each field sample near the mean spawning time con-
sisted of a mixture of individuals in different stages of 
spawning and recovery. 

The case studies lead to some specific recommendations 
for researchers who might wish to apply the models and es-
timation methods described in this paper. First, always use 
both size-at-age and tagging data for parameter estimation, 
particulary in cases where one or another of these data 
sources may have selection biases like tendency to sample or 
mark faster growing fish. Second, include data on size-at-age 
for very small (age 0) juveniles whenever possible, for ex-
ample from seasonal length-frequency sampling, in order to 
provide data on growth for the widest possible range of fish 
sizes (and hence better estimates for the troublesome size 
allometry parameters). Third, in design of tagging studies, 
seek to tag and recapture fish over as many months of the 
year as possible, particularly the fall-winter period, so as to 
provide estimates of growth rate over the widest possible 
range of temperatures. Fourth, if practical obtain frequent 
(e.g. weekly) size-age and growth rate samples during peri-
ods of rapid increase in temperature and spawning. These 
suggestions will not eliminate all parameter confounding, but 
will minimize the effects on estimation performance of H-m 
and d-n confounding. 

Bioenergetics models are commonly validated by com-
paring model estimates to known consumption rates from 
laboratory experiments. This type of experiment may prove a 
useful test for the accuracy and precision of consumption 
rate estimates derived from tagging and size-at-age data. It is 
possible that both methods will demonstrate the ability accu-
rately predict known consumption rates in laboratory set-
tings, while producing divergent estimates in field settings, 
thereby highlighting the need for continued improvements 
and assessments for field-based estimation.  
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