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Abstract:

Background:

Reservoir communities in the intermountain west are typically dominated by a mix of introduced fishes. Due to the non-coevolved
interactions present in these communities, energy flow and trophic interactions may not facilitate optimal growth and survival for all
species. It is difficult to predict how well each species will survive in such novel communities. One such community is in Jordanelle
Reservoir in northern Utah, USA. Recently, low survival and recruitment of stocked rainbow trout (Onchorhynchus mykiss) have
been observed in Jordanelle Reservoir.

Objective:

We characterize the food web structure of the fish community in Jordanelle reservoir to infer competitive or predatory interactions
that might lead to a poor return of stocked rainbow trout.

Methods:

We performed a stable isotope analysis on the fish community in Jordanelle Reservoir and carried out niche space analyses using the
software package Stable Isotope Bayesian Ellipse (SIBER) in R.

Results:

Small rainbow trout exhibit high competitive overlap with brown trout (Salmo trutta), smallmouth bass (Micropterus dolomieu), and
yellow perch (Perca flavescens). In addition, large brown trout and large smallmouth bass may feed heavily on small rainbow trout.

Conclusion:

Food  web  analysis  suggests  that  rainbow  trout  encounter  a  highly  competitive  and  potentially  high  predation  environment  in
Jordanelle reservoir, leading to observed low return rates.

Keywords: Food web, Stable isotope analysis, Rainbow trout, Trophic level, Littoral energy pathway, Pelagic energy pathway.

1. INTRODUCTION

Reservoirs in the intermountain west are typically dominated by a mix of non-native fish introduced from elsewhere
in North America or Europe for angling purposes [1 - 5]. The novel interactions among fish in these reservoirs can
cause the food web to function in non-coevolved and unpredictable ways [6, 7]. Often, food webs in reservoirs are less
stable than food webs in natural lakes with intact native species compositions [8]. Many aquatic systems have size-
structured interactions between species [9 - 11]. Ontogenetic niche shifts and mixed competition-predation interactions
result  in complex  systems  where a  single species  can fill  several  different  niches  depending on  its  life stage  [12].
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The evolutionary history of an introduced species interacts with local environmental and biotic conditions to increase
potential complexities. These novel interactions can result in high levels  of predation  (top-down effects)  or  reduced
amounts  of  energy  flow  up  through  the  food  web  (bottom-up  effects)  [8,  13].  Given  the  complexity  of  aquatic
ecosystems  and  the  novelty  of  artificial  reservoir  communities,  it  is  often  difficult  to  determine  what  species
combinations  may  lead  to  optimal  growth  and  survival  of  target  species.

In  freshwater  lentic  systems,  both  top-down  and  bottom-up  effects  can  influence  the  growth  and  population
dynamics of fishes [14,  15].  Top-down effects are manifest  as control  of lower trophic levels by consumers and in
freshwater systems, this is typically control of zooplankton or small fishes by larger predatory fishes [16, 17]. Bottom-
up effects are manifest as control of higher trophic levels by producers, where nutrient availability typically determines
the productivity of phytoplankton and thus exerts control on zooplankton and fish occupying the trophic levels above
[18].  In  natural  systems,  both  top-down and  bottom-up  forces  can  act  simultaneously  on  community  structure  and
function and effects can potentially be interactive [19, 20].

Rainbow trout (Oncorhynchus mykiss) are a highly sought after game fish and, as such, have been widely stocked
for recreational fishing [21]. Jordanelle Reservoir, in central Utah, has been continuously stocked with rainbow trout
since the impoundment was completed in 1992 and is currently stocked annually with rainbow trout at an average size
of 217 mm (2012-2015, Utah Division of Wildlife Resources stocking report). The catch per unit effort for rainbow
trout in Jordanelle reservoir was initially high after the reservoir filled and then reached an equilibrium at lower catch
rates [22], possibly due to reservoir aging [23]. However, in recent years, the catch rate for rainbow trout has dropped
further and the cause of this is not known [22, 24]. Introduced sportfish comprise the majority of the fish community in
Jordanelle, with brown trout (Salmo trutta), rainbow trout, and smallmouth bass (Micropterus dolomieu) attaining the
largest body sizes. The presence of these three top-level predators in Jordanelle reservoir suggests that competition for
prey  with  brown  trout  and  smallmouth  bass  may  be  responsible  for  the  poor  return  on  stocked  rainbow  trout.
Alternatively (or additionally), small rainbow trout may sustain high amounts of predation from larger brown trout,
smallmouth bass, and even cannibalism from large rainbow trout. To illuminate the likely contributing factors, we can
employ a characterization of the food web in Jordanelle reservoir to reveal the mixed competition-predation interactions
and clarify why stocked rainbow trout exhibit poor returns in catch rates.

Stable isotope ratios of carbon and nitrogen have been used to characterize food webs and trophic niche because
they integrate an organism’s diet into two simple, but informative variables [25]. Stable isotope ratios provide a time-
integrated measure of an organism’s diet for a specific time-window [26]. The stable isotope ratio of nitrogen (δ15N) is
used to estimate the trophic level of an organism because it is enriched from prey item to predator by roughly 3-4‰
(parts per thousand) [27 - 29]. The stable isotope ratio of carbon (δ13C) is indicative of the source of carbon fixation
(i.e., source of energy) [29 - 33]. In a lake ecosystem, the δ13C is useful to differentiate between pelagic and littoral
carbon sources. Carbon fixed in littoral environments is enriched in δ13C relative to carbon fixed in the pelagic energy
pathway [34].

To  explore  the  problem  of  low  return  on  stocked  rainbow  trout  in  Jordanelle  reservoir  we  used  stable  isotope
analysis  to quantify the food web structure and determine the trophic niche of  rainbow trout.  Our objective was to
explore possible top-down or bottom-up factors that may lead to low survival of stocked rainbow trout.

2. MATERIALS AND METHODS

2.1. Study System

Jordanelle Reservoir is a manmade impoundment on the Provo River located in Wasatch County, Utah, USA. With
the completion of Jordanelle dam in 1992, the reservoir began filling. The reservoir sits at an elevation of 1,880 m and
has a surface area of 13.35 km2. The reservoir has been continuously stocked with fish since 1993 [35]. Native fish
species  in  the  reservoir  are  cutthroat  trout  (Oncorhynchus  clarki),  Utah  chub  (Gila  atraria),  and  Utah  sucker
(Catostomus ardens). Non-native fish species in the reservoir are rainbow trout, brown trout, smallmouth bass, and
yellow perch (Perca flavescens).

2.2. Sample Collection

We sampled fish throughout the reservoir in spring and summer of 2015 using angling, gill nets and electrofishing
(locations in Fig. 1); sample numbers in Table 1. We sampled with gill nets at 8 locations in the reservoir. Gill nets
were set shortly before dusk and retrieved shortly after dawn to include two crepuscular periods. Using an electrofishing
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boat, we sampled 4 transects in the reservoir, with each transect sampled for 20 minutes. We removed a 1cm2 tissue
sample from the epaxial muscle of each fish and recorded the total length of the fish. We used a 63µm plankton tow
sampler  to  collect  a  sample  from  the  water  column  and  a  sample  from  the  water  surface  at  three  locations  in  the
reservoir in June 2015 (locations in Fig. 1). We collected four samples of attached filamentous algae by hand near the
shore in May 2015 (location in Fig. 1). We kept all samples frozen until lab preparation was commenced.

Fig. (1). Map of Jordanelle Reservoir, Utah, USA, showing dam, major inflow, and collection points for fish, plankton, and algae
samples.

2.3. Sample Preparation and Isotopic Analysis

We oven-dried tissue samples at 60° C for 72 hours, ground the samples into a homogeneous powder with a mortar
and pestle,  and measured 0.6  -  1.2mg of  the  powder  into  small  tin  capsules.  We sent  the  capsules  to  the  Colorado
Plateau Stable Isotope Laboratory at Northern Arizona University in Flagstaff, Arizona for stable isotope analysis. The
analysis was carried out on a Delta V Advantage Mass Spectrometer (Thermo Electron Corporation, Bremen, Germany)
configured through a CONFLO III (Thermo Electron Corporation), using a Carlo Erba NC2100 Elemental Analyzer
(Thermo-Quest Italia S.p.A., Milano, Italy). We used delta notation (δ13C and δ15N) expressed in parts per thousand (‰)
for  the  stable  isotope values.  The ratio  of  the  stable  isotope in  the  sample is  compared to  the  ratio  in  international
standards (Vienna Pee Dee Belemnite for  carbon and atmospheric nitrogen standard for  nitrogen) by the following
equation: δ13C or δ15N = [(Rsample/Rstandard) – 1] x 1000, where R is the ratio of 13C/12C or 15N/14N. We calculated the trophic
level by using the following equation: Trophic position = [(δ15Nconsumer - δ

15Nalgae)/2.9] + 1, where δ15Nconsumer is the average
signature of the organisms in question, δ15Nalgae is the average signature for algae, 2.9 is the enrichment factor for one
trophic level [36], and one is added to account for the trophic level of the algae.

To  determine  whether  isotope  signatures  of  fish  species  varied  with  length,  we  performed  linear  regressions
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between δ15N and total length and δ13C and total length for each species of fish (with the exception of Utah sucker,
because  all  individuals  of  this  species  were  large  adults).  For  species  that  showed  a  significant  relationship  in  the
regression, we investigated further by splitting them into 100 mm size classes (e.g. 0-100 mm, 100-200 mm, 200-300
mm,  etc.)  and  performing  ANOVA  analyses  followed  by  a  Tukey  HSD  on  these  size  classes  to  find  statistical
differences  to  separate  species  into  size  groups.  For  analysis  and  graphical  presentation,  we  separated  species-size
groups that showed significant differences in isotopic signatures (either in δ15N or δ13C) from other groups of the same
species.  Based on this  analysis,  we divided all  species,  except  Utah sucker,  into  two size-based groups as  follows.
Rainbow trout and brown trout: small < 400 mm TL (total length), and large > 400 mm TL (we captured only three
large rainbow trout); smallmouth bass and Utah chub: small < 200 mm TL, and large > 200 mm TL (we captured only
one small Utah chub); yellow perch: small < 100 mm TL, and large > 100 mm TL.

2.4. Trophic Niche Analysis

To calculate  the  niche  space  occupied  by  each  fish  species  and  overlap  with  small  rainbow trout,  we  used  the
program Stable Isotope Bayesian Ellipse in R (SIBER) [37]. This program uses a maximum likelihood function based
on the variance and covariance of the stable isotope signatures to construct ellipses that encompass roughly 40% of each
included species data points, which is intended to represent the core niche of a species. We then calculated the overlap
of this core niche area between small rainbow trout and other species. We used the R statistics package to perform all
statistical analyses [38].

Table 1. Sample sizes and stable isotope ratios (mean + confidence interval) of fish species, algae, and plankton collected in
Jordanelle Reservoir, Utah, USA.

Species n δ13C δ15N
brown trout (large, > 400 mm) 12 -28.14 + 0.97 14.47 + 0.44
brown trout (small, < 400 mm) 8 -28.56 + 0.54 13.05 + 0.65
rainbow trout (large, > 400 mm) 3 -30.84 + 0.75 15.69 + 0.62
rainbow trout (small, < 400 mm) 23 -29.15 + 0.55 13.59 + 0.17
Utah chub (large, > 200 mm) 28 -31.16 + 0.48 12.25 + 0.30
Utah chub (small, < 200 mm) 1 -25.24 10.76
Utah Sucker 9 -27.92 + 0.90 11.54 + 0.27
smallmouth bass (large, > 200 mm) 26 -28.01 + 0.27 14.58 + 0.23
smallmouth bass (small, < 200 mm) 14 -27.93 + 0.48 13.60 + 0.45
yellow perch (large, > 100 mm) 13 -27.89 + 0.41 13.32 + 0.48
yellow perch (small, < 100 mm) 15 -29.19 + 0.23 12.85 + 0.32
algae 4 -26.99 + 0.30 6.09 + 1.00
plankton 5 -32.19 + 0.59 6.79 + 0.85

3. RESULTS

3.1. Food Web Structure

As expected, trophic position varied widely among organisms in the food web Fig. (2). Algae was positioned at the
base of the food web (trophic level 1), consistent with its place as primary producers. Plankton was near the base of the
food web indicating a composition of plankton samples dominated by phytoplankton (trophic level 1.2). Utah sucker
and Utah chub occupied the lowest trophic levels among the fish (2.8 to 3.1). Small brown trout and both size classes of
yellow perch occupied the next trophic levels (3.3 to 3.4). Small rainbow trout, large brown trout, and smallmouth bass
occupied slightly higher trophic levels (3.6 to 3.9). Large rainbow trout occupied the highest trophic level (trophic level
4.3).

Jordanelle reservoir exhibited littoral and pelagic energy pathways, and these two pathways converged somewhat at
the level of top predators Fig. (2). The base of the littoral energy pathway was occupied by algae (enriched in δ13C). The
base of the pelagic pathway was occupied by plankton (depleted in δ13C). Fish were positioned somewhat intermediate
between the littoral and pelagic pathways. Utah sucker had the highest dependence (enriched in δ13C) on the littoral
energy pathway among fish, followed by smallmouth bass, brown trout and yellow perch, respectively. Small rainbow
trout exhibited a slightly higher dependence on the pelagic energy pathway, while Utah chub and large rainbow trout
had the highest dependence on the pelagic energy pathway among fish (least enriched δ13C).
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Fig. (2). Bi-plot of average δ13C and δ15N signatures of all fish species, algae, and plankton in Jordanelle Reservoir, Utah, USA. Error
bars represent confidence intervals.

3.2. Trophic Niche Analysis

The  core  isotopic  niche  of  small  rainbow  trout  overlapped  substantially  with  four  other  species-size  groups  as
follows: 38.4% with small yellow perch, 38.1% with small brown trout, 31.6% with small smallmouth bass, 25.6% with
large yellow perch, and 2.5% with large brown trout. The core niche of small rainbow trout did not overlap with large
rainbow trout, large smallmouth bass, or Utah chub (Fig. 3).

Fig.  (3).  Core  isotopic  niche  ellipses  and  niche  overlap  from  SIBER  analysis  for  two  size  classes  of  five  species  of  fish  from
Jordanelle Reservoir, Utah, USA.
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4. DISCUSSION

We show strong evidence for competition between small rainbow trout and other fish in Jordanelle reservoir. The
core niche of small rainbow trout overlapped moderately with small size classes of brown trout and smallmouth bass
and  with  both  size  classes  of  yellow  perch.  Overall,  more  than  half  of  the  core  niche  of  small  rainbow  trout  is
overlapped by a combination of these fish. The niche space around the small rainbow trout appears to be crowded with
brown trout, smallmouth bass, and yellow perch. The core niche of small rainbow trout was slightly more depleted in
δ13C than the other fish with which it overlapped, suggesting a slightly higher dependence on pelagic food sources,
which has been observed in other systems [39 - 41]. Competition with other fish species may account for the slightly
more pelagic diet of small rainbow trout. Brown trout have displaced rainbow trout in other systems and smallmouth
bass and yellow perch have impacted other salmonids by displacing them from the littoral energy pathway into the
pelagic  energy  pathway  [42  -  44].  However,  in  Jordanelle  reservoir,  Utah  chub  are  the  most  abundant  fish  in  the
reservoir, and they may be monopolizing the pelagic energy sources (i.e., zooplankton) [24]. As such, small rainbow
trout  appear  to  be inhabiting a  highly competitive environment  between brown trout,  smallmouth bass,  and yellow
perch in the littoral energy pathway and Utah chub in the pelagic energy pathway. High levels of competition with other
species could contribute to the poor return of rainbow trout in this system.

Large brown trout and large smallmouth bass attain sizes in Jordanelle reservoir that allow them to prey upon the
smaller  size  classes  of  rainbow  trout,  which  could  create  a  strong  top-down  effect.  Hatchery-reared  fish  are  often
predator naïve and are highly susceptible to predation because they often lack antipredator responses [45]. In an attempt
to reduce predation on newly stocked rainbow trout, the Utah Division of Wildlife Resources stocks rainbow trout at
sizes larger than 200 mm. However, our samples included several brown trout over 500 mm and a few smallmouth
basses over 350 mm, which would possess a gape size large enough to prey upon stocked rainbow trout [40, 46]. In
addition,  some  rainbow  trout  exceeded  400  mm  and  were  large  enough  to  prey  upon  stocked  rainbow  trout.
Furthermore, the position of large brown trout and large smallmouth bass in the food web suggests that these species
likely prey heavily on small rainbow trout and other small fishes that have similar isotopic signatures as small rainbow
trout (i.e., yellow perch, small brown trout, and small smallmouth bass). High levels of predation from large piscivores
could contribute to the poor return of rainbow trout in this system.

The few rainbow trout that survive and grow to large size in Jordanelle reservoir appear to exhibit an ontogenetic
niche shift at around 400 mm when they begin to feed at a higher trophic level that is also farther toward the pelagic
energy pathway than small rainbow trout. Often, such shifts at larger body sizes coincide with a switch to piscivory
[47], and these large individuals had the highest trophic signature of all fish sampled. The core niche of large rainbow
trout did not overlap with any other species. However, this core niche is only based on three individuals and the size of
the  core  niche  is  likely  underestimated.  Nevertheless,  these  fish  were  grouped  tightly  and  distinctly  from all  other
species in our sampling, suggesting a diet switch to an area of trophic niche space that is unoccupied by other fish in the
reservoir.

CONCLUSION

We  show  evidence  for  the  possibility  of  both  bottom-up  and  top-down  effects  on  rainbow  trout  in  Jordanelle
reservoir. Due to the dual nature of threats to small rainbow trout (i.e., competition and predation), it seems unlikely
that stocking different species of sports fish would alleviate the problem of low survival of rainbow trout. Rainbow trout
survival  will  probably  remain  low unless  the  composition  of  the  food web changes  dramatically  to  alleviate  either
competitive or predatory interactions indicated by this analysis.
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